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1 

 
A startup has collected data on the daily time (in minutes) that 50 users 

spend on their new mobile learning app. The company wants to 

estimate the average daily usage in the population. 

Since the sample size is not very large and the underlying distribution 

looks skewed, the data science team decides to use bootstrap 

resampling. 

Questions: 

1. How would you apply the bootstrap method to estimate a 95% 

confidence interval for the mean daily usage? 

2. Why might bootstrap be preferred here over using a standard 

formula for the confidence interval? 

3. If after 1,000 bootstrap resamples, the 2.5th percentile of the 

means is 32 minutes and the 97.5th percentile is 48 minutes, what would 

you conclude about the population mean? 

1) How to apply the bootstrap to estimate a 95% CI for the 
mean 

Procedure (step-by-step): 

1. Start with your observed sample of daily usage times (size n=50). 

Call it x. 

2. Repeat the following B times (common choices: 1,000 — 10,000): 

o Draw a bootstrap sample of size n with replacement from x. 

o Compute the sample mean of the bootstrap sample; store it. 

3. After B resamples you have a bootstrap distribution of the mean: 

{xˉ1∗,…,xˉB∗}. 

4. The percentile bootstrap 95% CI is simply the empirical 2.5th and 

97.5th percentiles of that bootstrap-means distribution: 

.  

5. Optionally compute the bootstrap standard error: 
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. You can also build a normal-approx CI using , 

 ,but for skewed data the percentile or BCa 

intervals are preferred. 

Quick checklist / assumptions: sample observations should be roughly 

independent and the sample should be representative of the population you 

want to infer about. 

2) Why bootstrap is preferred here 

 Skewed underlying distribution: Classical formula for the mean 

uses the Central Limit Theorem (CLT) and normal-based CIs. For 

small-to-moderate n and skewed data the CLT approximation can be 

poor; bootstrap captures the actual shape of the sampling distribution 

empirically. 

 Small-ish sample size (n = 50): 50 is borderline; with heavy skew, 

normal approximations may be biased. Bootstrap does not require 

normality. 

 No need to assume parametric form: If you’re unsure about the 

population distribution (which you are), bootstrap is nonparametric 

and more robust. 

 Flexible to statistics beyond the mean: Bootstrap easily extends to 

medians, percentiles, differences, etc. 

 Practical caveats: bootstrap relies on the sample being 

representative and having independent observations. If those are 

violated (e.g., strong time dependence), bootstrap results will be 

unreliable. 

If you need higher accuracy in skewed cases, consider the BCa (bias-

corrected and accelerated) bootstrap interval rather than plain percentile. 

3) Interpretation of the given bootstrap percentiles 

We performed 1,000 bootstrap resamples. The 2.5th and 97.5th percentiles 

of the bootstrap means are 32 and 48 minutes, respectively. 

Conclusion: 
A 95% bootstrap percentile confidence interval for the population mean is 

[32,  48] minutes. Practically, this means that based on the observed sample 

and the bootstrap procedure, the best empirical estimate is that the true 

average daily usage in the population lies between 32 and 48 minutes with 

approximate 95% confidence. 

Short interpretation we can report: 

“We estimate the population mean daily usage to be between 32 and 48 

minutes (95% CI, bootstrap percentile).” 

Extra notes / caveats you should state: 

 This interval is conditional on the sample being representative and 



observations independent. 

 With only B = 1,000 resamples the interval is usually fine, but for 

more precise endpoints you can increase to B = 5,000–10,000 

(computationally cheap). 

 If the bootstrap distribution is strongly skewed, consider the BCa 

interval which corrects bias and skewness. 

Bonus — Jupyter / Python code  

 import numpy as np 

 import pandas as pd 

 def bootstrap_mean_ci(data, B=10000, alpha=0.05, seed=None): 

     rng = np.random.default_rng(seed) 

     n = len(data) 

     means = np.empty(B) 

     for b in range(B): 

         sample = rng.choice(data, size=n, replace=True) 

         means[b] = sample.mean() 

     lower = np.percentile(means, 100*(alpha/2)) 

     upper = np.percentile(means, 100*(1-alpha/2)) 

     se_boot = means.std(ddof=1) 

     return { 

         "mean_observed": np.mean(data), 

         "se_boot": se_boot, 

         "ci_percentile": (lower, upper), 

         "bootstrap_means": means 

     } 

                         

2(

a) 

What do you mean by Bootstrap samples? How does it help in building a 

Confidence Interval? 

 

Suppose you have a dataset of size n: 

 

 A bootstrap sample is a new sample of size n drawn with 

replacement from the original dataset. 

o “With replacement” means the same observation can appear 

multiple times in the bootstrap sample, or not at all. 

o For example, if your dataset is [10,20,30,40], a bootstrap 

sample could be [20,20,40,10] or [30,30,10,40]. 

 We can generate many such bootstrap samples (say B=1000, 5000, 

or more). 

 For each bootstrap sample, we compute the statistic of interest 

(mean, median, variance, regression coefficient, etc.). 

This gives a bootstrap distribution of that statistic. 

How does it help in building a Confidence Interval? 
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The key idea: 

 In classical statistics, confidence intervals often rely on theoretical 

formulas (like assuming normality of errors, using t- or z-

distributions, etc.). 

 But what if the data are skewed, sample size is small, or you don’t 

want to assume a specific distribution? 

Bootstrap helps because: 

1. It mimics repeated sampling from the population by resampling 

from the observed data. 

2. The variability in the bootstrap distribution reflects the sampling 

variability of the statistic. 

3. To build a 95% confidence interval, we take the middle 95% of the 

bootstrap distribution (usually the 2.5th and 97.5th percentiles). 

2(b) A pharmaceutical trial compares a new drug with a placebo. Suppose 

you reject the null hypothesis and claim the drug works, but later it turns out 

the drug has no effect. 

 What type of statistical error have you made? 

 How could you reduce the chances of this error in future 

experiments? 

Question 1: What type of statistical error is this? 

 The null hypothesis H0: “The drug has no effect.” 

 You rejected H0 and concluded the drug works. 

 Later, it turned out the drug really has no effect → your rejection of 

H0 was wrong. 

👉 This is a Type I Error (false positive). 

Definition: Type I Error occurs when you reject a true null hypothesis. 

Question 2: How to reduce the chances of this error? 

The probability of making a Type I Error is the significance level (α) you 

choose for your test. 

 Common choices: α=0.05 (5%) or α=0.01 (1%). 

To reduce Type I error: 

1. Lower the significance level (α): 

o For example, test at 1% instead of 5%. 

o Makes it harder to reject H0. 

2. Use corrections for multiple testing (e.g., Bonferroni correction) if 

many comparisons are being made. 

3. Improve experimental design: 



o Increase sample size for more reliable estimates. 

o Reduce bias and noise (randomization, blinding, proper 

controls). 

4. Replication: Repeating the experiment independently reduces the 

chance that one false positive drives the conclusion. 
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 Explain the practical relevance of Binomial and Poisson Distribution. Give 

the formula for their Pdf.  
 
What is output of the following Python code : 
 
from scipy import stats 
print(stats.binom.pmf(2, n=5, p=0.5)) 
 

1. Practical Relevance 

Binomial Distribution 

 Used when there are a fixed number of independent trials with 

two possible outcomes (Success/Failure). 

 Examples: 

o Tossing a coin 10 times and counting the number of heads. 

o Quality control: number of defective items in a batch of 50. 

o Medical trials: number of patients who respond positively to 

a new drug out of a fixed sample. 

Poisson Distribution 

 Used when we count the number of events happening in a fixed 

interval of time/space, assuming events occur independently at a 

constant average rate. 

 Examples: 

o Number of customer arrivals at a bank per hour. 

o Number of phone calls received at a call center per minute. 

o Number of emergency cases arriving at a hospital per day. 

2. Probability Density Function (PMF) 

 Binomial PMF:

where 

 n = number of trials, 

 p = probability of success, 

 k = number of successes. 
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Poisson PMF: 

 

where 

 λ = average rate of occurrence, 

 k = number of events. 

 3. Python Code Output 

from scipy import stats 

print(stats.binom.pmf(2, n=5, p=0.5)) 

This computes the probability of getting exactly 2 successes in 5 

trials with probability of success p=0.5. 

 

 

4 
a What is the difference between student’s t distribution and Normal Distribution. 

What is Standard Error ? 
 

 

🔹 Difference between Student’s t-distribution and Normal 
distribution 
 
 

Feature Normal Distribution Student’s t-Distribution 

Shape Symmetrical, bell-shaped Symmetrical, bell-shaped 

Parameters Mean (μ), Standard deviation (σ) Degrees of freedom (df = n−1) 

Tails Thinner tails Heavier tails (more probability in the tails) 

Usage 
When population σ is known, or 

sample size is very large 

When σ is unknown and we estimate it from the 

sample (small/medium sample sizes) 

Convergence Always the same shape Approaches the normal distribution as df → ∞ 

 

What is Standard Error (SE)? 

 Definition: The standard error is the standard deviation of a 

sampling distribution of a statistic (like the sample mean). 

 For the sample mean: 
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where: 

 s = sample standard deviation, 

 n = sample size. 

 Interpretation: SE measures how much the sample mean is 

expected to vary from one sample to another. 

 Key role: Smaller SE → the sample mean is a more precise estimate 

of the population mean. 

 
b State the Central Limit Theorem? How is it relevant to Statistical Inference. 

 

Central Limit Theorem (CLT) 

Statement: 
If we take many random samples of size n from any population with mean μ 

and finite variance σ2, then as nnn becomes large, the sampling 

distribution of the sample mean Xˉ approaches a Normal distribution, 

regardless of the population’s original distribution. 

Formally: 

 

Relevance to Statistical Inference 

The CLT is the backbone of modern statistics because it justifies why we 

can use normal-based methods (like z-tests, t-tests, confidence intervals) 

even when the underlying population is not normal: 

1. Approximate Normality of Sample Mean: 
Even if data is skewed or irregular, the mean of a reasonably large 

sample (usually n≥30) will be approximately normal. 

2. Confidence Intervals: 

CLT allows us to construct confidence intervals for population 

means using the normal (or t) distribution. 

3. Hypothesis Testing: 
Test statistics (like the standardized sample mean) rely on the CLT 

to follow approximately normal distributions under H0. 

4. Practical Applications: 

o Polling: estimating population proportions. 

o Quality control: average defect rates. 

o Finance: average returns over time. 
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a 
 State the difference between Violin plot and Box plot with diagram. When do we 

use Hexagonal Binning. 

Feature Box Plot Violin Plot 

Shows 
Summary statistics (median, 

quartiles, whiskers, outliers) 
Summary statistics and full distribution 

Shape Rectangular box with whiskers Symmetric, violin-shaped density curve 

Data 

distribution 

Hides the shape of the distribution 

(only gives 5-number summary) 

Displays the kernel density estimate (KDE), 

showing whether the data is skewed, 

multimodal, etc. 

Use case 
Good for comparing medians and 

spread across groups 

Good for seeing detailed distribution patterns, 

especially multimodal data 

Diagram (conceptual): 

Box Plot: 

   whisker     box       whisker 

    |         ┌─────┐        | 

    |---------|  |  |--------| 

              └─────┘ 

              Median 

Violin Plot: 

   Density shape 

      () 

     (  ) 

    (    ) 

    (    ) 

     (  ) 

      () 

     median shown inside 

So violin plots = box plot + distribution shape. 

 

When do we use Hexagonal Binning? 
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 Hexbin plots are used when you have two continuous variables 

and a large dataset, where scatter plots would suffer from 

overplotting (points overlapping, making it hard to see density). 

 Instead of plotting each point, the data space is divided into 

hexagonal bins, and the color of each hexagon represents the count 

(frequency) of points in that bin. 

Use cases: 

 Visualizing correlations in large datasets. 

 Example: plotting 100,000 values of height vs weight. 

 Density-based patterns become clear compared to a messy scatter 

plot. 

 b 
What do you mean by Test Statistic? Differentiate between Sample Parameter and 
Population parameter. 

What do you mean by a Test Statistic? 

 A test statistic is a numerical value calculated from sample data that 

is used in hypothesis testing. 

 It measures how far the sample statistic is from the hypothesized 

population parameter, relative to the variation in the data. 

 The test statistic is then compared to a theoretical distribution 

(Normal, t, F, Chi-square, etc.) to decide whether to reject the null 

hypothesis. 

Examples: 

 z-test statistic: 

 

Difference between Sample Parameter and Population Parameter 

Aspect Population Parameter Sample Statistic 

Definition 
A numerical summary that describes the 

entire population 

A numerical summary calculated from a 

sample (subset of population) 

Examples 
Population mean (μ), population 

variance (σ²), population proportion (P) 

Sample mean (xˉ\bar{x}), sample 

variance (s²), sample proportion (p̂) 

Known / 

Unknown 

Usually unknown (we can’t measure the 

whole population) 

Known (we compute from data we 

collected) 

Role Fixed value (does not change) 
Varies from sample to sample; used to 

estimate the population parameter 

Use in 

Inference 
True value we want to infer about 

Provides the basis for estimating or 

testing about the population 
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a Explain the intuition behind Hypothesis Testing, Level of Significance and p-value 

Intuition behind Hypothesis Testing 

 Imagine you’re a detective. You start with a presumption of 

innocence (null hypothesis, H₀). 

 You collect evidence (sample data). 

 You ask: “Is this evidence strong enough to reject H₀ and believe the 

alternative hypothesis, H₁?” 

So, hypothesis testing is a structured decision-making process: 

1. Assume H₀ is true (status quo). 

2. Calculate a test statistic from your sample. 

3. Compare it to a reference distribution (normal, t, chi-square, etc.). 

4. If the evidence is too unlikely under H₀, you reject H₀ in favor of H₁. 

Level of Significance (α) 

 Denoted by α, it is the threshold for risk you are willing to take of 

making a Type I Error (rejecting a true H₀). 

 Common values: 

o α = 0.05 → 5% chance of wrongly rejecting H₀. 

o α = 0.01 → 1% chance. 

Example: If α = 0.05, you’re saying “I’m okay with being wrong 5 times 

out of 100 in rejecting H₀.” 

p-value 

 The p-value is the probability of observing a test statistic as extreme 

as (or more extreme than) the one you got, assuming H₀ is true. 

 It answers: “If the null hypothesis were true, how surprising is my 

sample?” 

Interpretation: 

 Small p-value (≤ α) → evidence is strong against H₀ → reject H₀. 

 Large p-value (> α) → not enough evidence → fail to reject H₀. 

Example: 

 p = 0.03, α = 0.05 → reject H₀ (evidence suggests effect exists). 

 p = 0.40, α = 0.05 → fail to reject H₀ (data consistent with no effect). 
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b A sports scientist is tracking the performance of professional runners. In the 

first race of the season, one athlete unexpectedly runs much faster than 

their usual average time (an unusually good performance). 
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The scientist predicts that in the next race, the athlete’s performance will be 

slower and closer to their long-term average. 

Questions: 

1. What statistical concept explains why the athlete’s performance is 

likely to decline toward their usual average in the next race? 

2. Does this mean the athlete is “getting worse”? Explain why or why 

not. 

3. Give another real-world example (outside sports) where regression 

to the mean commonly occurs. 

 

1.What statistical concept explains this? 

The concept is Regression to the Mean. 

👉 It means that if a random variable shows an extreme value (very high or 

very low) in one measurement, the next measurement is likely to be closer 

to its average, simply because of natural variability. 

In this case, the athlete’s unusually fast race is partly due to chance factors 

(good weather, perfect mindset, competition, etc.). These lucky factors 

won’t all align again, so the next performance is expected to move closer to 

the average. 

2. Does this mean the athlete is “getting worse”? 

❌ No, it doesn’t. 

The athlete is not suddenly performing worse. The unusually good 

performance was an outlier influenced by random variation. Their “true” 

performance ability is reflected by their long-term average. 

So when performance drops back toward the average, it’s not a decline in 

skill — it’s just the natural balancing out of random fluctuations. 

3. Another real-world example of Regression to the Mean 

👉 Education: 

Students who score extremely high or extremely low on a test often score 

closer to the class average on the next test. This doesn’t mean smart students 

got “dumber” or struggling students got “smarter” — it’s just that random 

factors (luck, question fit, mood, etc.) don’t repeat in the same way. 
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