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A startup has collected data on the daily time (in minutes) that 50 users 10 co1l L3
1 spend on their new mobile learning app. The company wants to

estimate the average daily usage in the population.

Since the sample size is not very large and the underlying distribution
[looks skewed, the data science team decides to use bootstrap
resampling.

Questions:

1. How would you apply the bootstrap method to estimate a 95%
confidence interval for the mean daily usage?

2. Why might bootstrap be preferred here over using a standard
formula for the confidence interval?

3. If after 1,000 bootstrap resamples, the 2.5th percentile of the
means is 32 minutes and the 97.5th percentile is 48 minutes, what would
you conclude about the population mean?

1) How to apply the bootstrap to estimate a 95% CI for the
mean

Procedure (step-by-step):

1. Start with your observed sample of daily usage times (size n=50).
Call it x.
2. Repeat the following B times (common choices: 1,000 — 10,000):
o Draw a bootstrap sample of size n with replacement from x.
o Compute the sample mean of the bootstrap sample; store it.
3. After B resamples you have a bootstrap distribution of the mean:
{X"1%,...,x Bx}.
4. The percentile bootstrap 95% CI is simply the empirical 2.5th and
97.5th percentiles of that bootstrap-means distribution:

Clgsy, = {percentile, ;(z*), percentiley, ;(2*))

5. Optionally compute the bootstrap standard error:
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§ Epoot = sd(27) . You can also build a normal-approx Cl using ,
T+ - 5 Eyoots i

T - Z0.978 boot: hut for skewed data the percentile or BCa
intervals are preferred.

Quick checklist / assumptions: sample observations should be roughly
lindependent and the sample should be representative of the population you
want to infer about.

2) Why bootstrap is preferred here

o Skewed underlying distribution: Classical formula for the mean
uses the Central Limit Theorem (CLT) and normal-based Cls. For
small-to-moderate n and skewed data the CLT approximation can be
poor; bootstrap captures the actual shape of the sampling distribution
empirically.

e Small-ish sample size (n = 50): 50 is borderline; with heavy skew,
normal approximations may be biased. Bootstrap does not require
normality.

e No need to assume parametric form: If you’re unsure about the
population distribution (which you are), bootstrap is nonparametric
and more robust.

o Flexible to statistics beyond the mean: Bootstrap easily extends to
medians, percentiles, differences, etc.

e Practical caveats: bootstrap relies on the sample being
representative and having independent observations. If those are
violated (e.g., strong time dependence), bootstrap results will be
unreliable.

If you need higher accuracy in skewed cases, consider the BCa (bias-
corrected and accelerated) bootstrap interval rather than plain percentile.

3) Interpretation of the given bootstrap percentiles

\We performed 1,000 bootstrap resamples. The 2.5th and 97.5th percentiles
of the bootstrap means are 32 and 48 minutes, respectively.

Conclusion:

A 95% bootstrap percentile confidence interval for the population mean is
[[32, 48] minutes. Practically, this means that based on the observed sample
and the bootstrap procedure, the best empirical estimate is that the true
average daily usage in the population lies between 32 and 48 minutes with
approximate 95% confidence.

Short interpretation we can report:
“We estimate the population mean daily usage to be between 32 and 48
minutes (95% CI, bootstrap percentile).”

|[Extra notes / caveats you should state:

e This interval is conditional on the sample being representative and




observations independent.

With only B = 1,000 resamples the interval is usually fine, but for
more precise endpoints you can increase to B = 5,000-10,000
(computationally cheap).

If the bootstrap distribution is strongly skewed, consider the BCa
interval which corrects bias and skewness.

Bonus — Jupyter / Python code

import numpy as np
import pandas as pd
def bootstrap_mean_ci(data, B=10000, alpha=0.05, seed=None):
rng = np.random.default_rng(seed)
n = len(data)
means = np.empty(B)
for b in range(B):
sample = rng.choice(data, size=n, replace=True)
means[b] = sample.mean()
lower = np.percentile(means, 100*(alpha/2))
upper = np.percentile(means, 100*(1-alpha/2))
se_boot = means.std(ddof=1)
return {
"mean_observed": np.mean(data),
"se_boot": se_boot,
"ci_percentile”: (lower, upper),
"bootstrap_means": means
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What do you mean by Bootstrap samples? How does it help in building a
Confidence Interval?

Suppose you have a dataset of size n:

x ={T1,®T2,-.-,Tn}

A bootstrap sample is a new sample of size n drawn with
replacement from the original dataset.
o “With replacement” means the same observation can appear
multiple times in the bootstrap sample, or not at all.
o For example, if your dataset is [10,20,30,40], a bootstrap
sample could be [20,20,40,10] or [30,30,10,40].
We can generate many such bootstrap samples (say B=1000, 5000,
or more).
For each bootstrap sample, we compute the statistic of interest
(mean, median, variance, regression coefficient, etc.).

This gives a bootstrap distribution of that statistic.

How does it help in building a Confidence Interval?
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The key idea:

o Inclassical statistics, confidence intervals often rely on theoretical
formulas (like assuming normality of errors, using t- or z-
distributions, etc.).

o But what if the data are skewed, sample size is small, or you don’t
want to assume a specific distribution?

[Bootstrap helps because:

1. It mimics repeated sampling from the population by resampling
from the observed data.

2. The variability in the bootstrap distribution reflects the sampling
variability of the statistic.

3. To build a 95% confidence interval, we take the middle 95% of the
bootstrap distribution (usually the 2.5th and 97.5th percentiles).

2(b) A pharmaceutical trial compares a new drug with a placebo. Suppose
you reject the null hypothesis and claim the drug works, but later it turns out
the drug has no effect.

o What type of statistical error have you made?
e How could you reduce the chances of this error in future
experiments?

Question 1: What type of statistical error is this?
e The null hypothesis HO: “The drug has no effect.”
e You rejected HO and concluded the drug works.

o Later, it turned out the drug really has no effect — your rejection of
HO was wrong.

1 This is a Type | Error (false positive).

[Definition: Type | Error occurs when you reject a true null hypothesis.

Question 2: How to reduce the chances of this error?

The probability of making a Type | Error is the significance level (a) you
choose for your test.

e Common choices: a=0.05 (5%) or 0=0.01 (1%).
To reduce Type | error:

1. Lower the significance level (a):
o For example, test at 1% instead of 5%.
o Makes it harder to reject HO.
2. Use corrections for multiple testing (e.g., Bonferroni correction) if
many comparisons are being made.
3. Improve experimental design:




o Increase sample size for more reliable estimates.
Reduce bias and noise (randomization, blinding, proper
controls).
4. Replication: Repeating the experiment independently reduces the
chance that one false positive drives the conclusion.

Explain the practical relevance of Binomial and Poisson Distribution. Give
the formula for their Pdf.

\What is output of the following Python code :

from scipy import stats
print(stats.binom.pmf(2, n=5, p=0.5))

1. Practical Relevance
IBinomial Distribution

e Used when there are a fixed number of independent trials with
two possible outcomes (Success/Failure).
e Examples:
o Tossing a coin 10 times and counting the number of heads.
o Quality control: number of defective items in a batch of 50.
o Medical trials: number of patients who respond positively to
a new drug out of a fixed sample.

Poisson Distribution

o Used when we count the number of events happening in a fixed
interval of time/space, assuming events occur independently at a
constant average rate.

e Examples:

o Number of customer arrivals at a bank per hour.
o Number of phone calls received at a call center per minute.
o Number of emergency cases arriving at a hospital per day.

2. Probability Density Function (PMF)

« Binomial PMF:
P(X =k)= (:)pk(l —p}”_k7 k=0,1,2,...,n
where

e« n = number of trials,
e p = probability of success,
¢ Kk =number of successes.
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Poisson PMF:

where

e )\ =average rate of occurrence,
e Kk =number of events.

3. Python Code Output
from scipy import stats
[print(stats.binom.pmf(2, n=5, p=0.5))

This computes the probability of getting exactly 2 successes in 5
trials with probability of success p=0.5.

Difference between Student’s t-distribution and Normal
|ldistribution

Feature Normal Distribution Student’s t-Dis
Shape Symmetrical, bell-shaped Symmetrical, bell-shaped
Parameters Mean (p), Standard deviation (c) Degrees of freedom (df =n
Tails Thinner tails Heavier tails (more probabif
Usage When po_pul?ltion o is known, or When o is unknowp and wg

sample size is very large sample (small/medium sam
Convergence Always the same shape Approaches the normal dist

What is Standard Error (SE)?

o Definition: The standard error is the standard deviation of a
sampling distribution of a statistic (like the sample mean).
e For the sample mean:

a2 -{0.125) = 0.3125
PX =k =", k=012,
Cornwvergence Always the same shape Approaches the normal distribution as df — o C03 Ll
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where:

e s =sample standard deviation,

e n=sample size.

e Interpretation: SE measures how much the sample mean is
expected to vary from one sample to another.

e Key role: Smaller SE — the sample mean is a more precise estimate
of the population mean.

State the Central Limit Theorem? How is it relevant to Statistical Inference.

[Central Limit Theorem (CLT)

Statement:

If we take many random samples of size n from any population with mean pu
and finite variance 2, then as nnn becomes large, the sampling
distribution of the sample mean X~ approaches a Normal distribution,
regardless of the population’s original distribution.

Formally:

X — d

N(D,1} asn— co

Relevance to Statistical Inference

The CLT is the backbone of modern statistics because it justifies why we
can use normal-based methods (like z-tests, t-tests, confidence intervals)
even when the underlying population is not normal:

1. Approximate Normality of Sample Mean:
Even if data is skewed or irregular, the mean of a reasonably large
sample (usually n>30) will be approximately normal.
2. Confidence Intervals:
CLT allows us to construct confidence intervals for population
means using the normal (or t) distribution.
3. Hypothesis Testing:
Test statistics (like the standardized sample mean) rely on the CLT
to follow approximately normal distributions under HO.
4. Practical Applications:
o Polling: estimating population proportions.
o Quality control: average defect rates.
o Finance: average returns over time.
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use Hexagonal Binning.
Feature Box Plot
Summary statistics (median,

Use case
spread across groups

Diagram (conceptual):
[Box Plot:

whisker  box whisker

Median
\Violin Plot:
Density shape

0

()

()
()

()

0

median shown inside

When do we use Hexagonal Binning?

State the difference between Violin plot and Box plot with diagram. When do we

Shows quartiles, whiskers, outliers)
Shape Rectangular box with whiskers
Data Hides the shape of the distribution

distribution  (only gives 5-number summary)

Good for comparing medians and Good for seeing detailed d

So violin plots = box plot + distribution shape.

Violin P
Summary statistics and fu

Symmetric, violin-shaped

Displays the kernel densit
showing whether the data |
multimodal, etc.

especially multimodal data
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e Hexbin plots are used when you have two continuous variables
and a large dataset, where scatter plots would suffer from
overplotting (points overlapping, making it hard to see density).

o Instead of plotting each point, the data space is divided into
hexagonal bins, and the color of each hexagon represents the count
(frequency) of points in that bin.

|[Use cases:

o Visualizing correlations in large datasets.

o Example: plotting 100,000 values of height VS weight.

o Density-based patterns become clear compared to a messy scatter
plot.

\What do you mean by Test Statistic? Differentiate between Sample Parameter and
Population parameter.

What do you mean by a Test Statistic?

e Atest statistic is a numerical value calculated from sample data that
is used in hypothesis testing.

e It measures how far the sample statistic is from the hypothesized
population parameter, relative to the variation in the data.

e The test statistic is then compared to a theoretical distribution
(Normal, t, F, Chi-square, etc.) to decide whether to reject the null
hypothesis.

[Examples:

e Zz-test statistic:

- T-test statistic:

+ =

- Chi-square test statistic (goodness-of-fit):

_ =
X7 = 3D T

Difference between Sample Parameter and Population Parameter

Aspect Population Parameter Sample
I A numerical summary that describes the A numerical summa
Definition entire population sample (subset of p
Examples Population mean (W), population ‘ Sarpple mean (X \bg
variance (62?), population proportion (P) variance (s?), sampl
Known / Usually unknown (we can’t measure the Known (we comput
Unknown whole population) collected)
Role Fixed value (does not change) Varies from sample

estimate the popula

Use in . Provides the basis fq
True value we want to infer about .
Inference testing about the po
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Explain the intuition behind Hypothesis Testing, Level of Significance and p-value

Intuition behind Hypothesis Testing

o Imagine you’re a detective. You start with a presumption of
innocence (null hypothesis, Ho).

e You collect evidence (sample data).

e You ask: “Is this evidence strong enough to reject Ho and believe the
alternative hypothesis, H:?”

So, hypothesis testing is a structured decision-making process:

Assume Ho is true (status quo).

Calculate a test statistic from your sample.

Compare it to a reference distribution (normal, t, chi-square, etc.).

If the evidence is too unlikely under Ho, you reject Ho in favor of Hi.

PonhRE

Level of Significance («)

o Denoted by a, it is the threshold for risk you are willing to take of
making a Type | Error (rejecting a true Ho).
e Common values:
o a=0.05— 5% chance of wrongly rejecting Ho.
o a=0.01 — 1% chance.

[Example: If a.= 0.05, you’re saying “I’m okay with being wrong 5 times
out of 100 in rejecting Ho.”

p-value

e The p-value is the probability of observing a test statistic as extreme
as (or more extreme than) the one you got, assuming Ho is true.

o Itanswers: “If the null hypothesis were true, how surprising is my
sample?”

Interpretation:

e Small p-value (< a) — evidence is strong against Ho — reject Ho.
e Large p-value (> a) — not enough evidence — fail to reject Ho.

[Example:

e p=0.03, a=0.05— reject Ho (evidence suggests effect exists).
e p=0.40, a=0.05 — fail to reject Ho (data consistent with no effect).
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A sports scientist is tracking the performance of professional runners. In the
first race of the season, one athlete unexpectedly runs much faster than
their usual average time (an unusually good performance).
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The scientist predicts that in the next race, the athlete’s performance will be
slower and closer to their long-term average.

Questions:

1. What statistical concept explains why the athlete’s performance is
likely to decline toward their usual average in the next race?

2. Does this mean the athlete is “getting worse”? Explain why or why
not.

3. Give another real-world example (outside sports) where regression
to the mean commonly occurs.

1.What statistical concept explains this?
The concept is Regression to the Mean.

1 It means that if a random variable shows an extreme value (very high or
\very low) in one measurement, the next measurement is likely to be closer
to its average, simply because of natural variability.

In this case, the athlete’s unusually fast race is partly due to chance factors
(good weather, perfect mindset, competition, etc.). These lucky factors
won’t all align again, so the next performance is expected to move closer to
the average.

2. Does this mean the athlete is “getting worse”?
X No, it doesn’t.

The athlete is not suddenly performing worse. The unusually good
performance was an outlier influenced by random variation. Their “true”
performance ability is reflected by their long-term average.

So when performance drops back toward the average, it’s not a decline in
skill — it’s just the natural balancing out of random fluctuations.

3. Another real-world example of Regression to the Mean

'] Education:

Students who score extremely high or extremely low on a test often score
closer to the class average on the next test. This doesn’t mean smart students
got “dumber” or struggling students got “smarter” — it’s just that random
factors (luck, question fit, mood, etc.) don’t repeat in the same way.

Cl CClI
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