r	1	1	1		1	1	
USN							

Internal Assessment Test 1 – Sept. 2025 ANSWER KEY

il.	Answer any FIVE FULL Questions	Marks	CO	RBT
	a) Explain the symmetric cipher modelb) Explain one time pad	5+5	CO1	L2
	b) Explain one time pad a)			
	Secret key shared by sender and recipient sender and recipient			
	Plaintext input Encryption algorithm (e.g., AES) Transmitted ciphertext $Y = E(K, X)$ Decryption algorithm (reverse of encryption algorithm) Plaintext output			
	Symmetric Encryption Scheme –5 Key Ingredients PlaintextThe original readable message or data.			
	☐ Encryption AlgorithmPerforms substitutions and transformations on the plaintext using a key.			
	□ Secret KeyA value used by the algorithm; independent of the message. Different keys result in different ciphertexts.			
	\Box Ciphertext The scrambled, unintelligible output generated from plaintext + key.			
	☐ Decryption Algorithm Reverses the encryption process using the same key to recover the original plaintext.			
	b) One-Time Pad (OTP) The One-Time Pad (OTP) is a perfectly secure symmetric encryption technique in which a random key (called the pad) is			
	used only once to encrypt and decrypt a message.			
	 Working Principle: The plaintext is converted into binary or numeric form. A random key of the <i>same length</i> as the plaintext is generated. 			
	3. Encryption is done using bitwise XOR (⊕) operation			
	between the plaintext and key: $C=P \bigoplus KC = P \setminus KC = P \bigcup K$ where			
	CCC = CiphertextPPP = Plaintext			
	 KKK = Key Decryption is done by applying XOR again with the same key: 			
	ACy.	i	1	

	<u> </u>		I	1
	Example:			
	Plaintext: HELLO			
	Convert to binary and use a random key of equal length.			
	When XOR is performed bitwise, you get ciphertext.			
	Using the same key again decrypts it back to HELLO .			
	Features / Advantages:			
	• Provides absolute (theoretical) security if:			
	o The key is truly random .			
	 The key is as long as the message. 			
	The key is as long as the message.The key is never reused.			
	· · · · · · · · · · · · · · · · · · ·			
	o The key is kept completely secret .			
	Limitations:			
	• Key distribution is difficult (key must be shared securely).			
	• Key management is complex since keys cannot be reused.			
	• Impractical for long messages or frequent communication.			
2	Explain Play Fair Cipher & Apply its rules for the following Key =	10	CO1	L3
	MONARCHY Plaintext = CRYPTOGRAPHY to get the cipher text			
	Definition			
	The Playfair cipher is a digraph substitution technique. It encrypts pairs			
	of letters using a 5×5 key square built from a keyword (I/J combined).			
	Working on pairs hides single-letter frequency, making it stronger than			
	simple monoalphabetic ciphers.			
	Constructing the 5×5 Key Square			
	Write the key; remove duplicate letters.			
	• Fill a 5×5 grid row-wise with key letters, then the rest of the			
	alphabet (merge I/J; usually treat J as I).			
	$Key = MONARCHY \rightarrow unique: MONARCHY$			
	Alphabet (I/J merged): ABCDEFGHIKLMNOPQRSTUV			
	WXYZ			
	Key square:			
	M O N A R			
	СНҮВ D			
	E F G I K			
	L P Q S T			
	UVWXZ			
	Preparing Plaintext			
	Rules:			
	 Remove spaces/punctuation; change J→I. 			
	• Split into digraphs (pairs).			
	• If a pair has double letters , insert X between them.			
	• If odd length, pad a final X.			
	Plaintext = CRYPTOGRAPHY			
	Pairs: CR YP TO GR AP HY (no doubles; even length)			
	Encryption Rules			
	For each pair (A,B):			
	1. Same row: replace each with the letter to its right (wrap at end).			
	2. Same column: replace each with the letter below it (wrap at			
	bottom).			
	3. Rectangle : replace each with the letter in the same row but the			
	column of the other (i.e., take the rectangle corners).			
	Worked Example (step-by-step)			
	Using the square above:			
	• CR: $C(1,0)$, $R(0,4) \rightarrow \text{rectangle} \rightarrow (1,4) = \mathbf{D}$, $(0,0) = \mathbf{M} \rightarrow \mathbf{DM}$			
	• YP : $Y(1,2)$, $P(3,1) \rightarrow \text{rectangle} \rightarrow (1,1) = H$, $(3,2) = Q \rightarrow HQ$			
	• TO: $T(3,4)$, $O(0,1) \rightarrow rectangle \rightarrow (3,1)=P$, $(0,4)=R \rightarrow PR$			
	• GR : $G(2,2)$, $R(0,4) \rightarrow \text{rectangle} \rightarrow (2,4)=K$, $(0,2)=N \rightarrow KN$			
	• AP: $A(0,3)$, $P(3,1) \rightarrow \text{rectangle} \rightarrow (0,1) = \mathbf{O}$, $(3,3) = \mathbf{S} \rightarrow \mathbf{OS}$			
	• HY : $H(1,1)$, $Y(1,2) \rightarrow \text{same row} \rightarrow \text{right} \rightarrow \mathbf{Y}$, $\mathbf{B} \rightarrow \mathbf{YB}$			

	Ciphertext			
	Concatenate: DMHQPRKNOSYB			
3	Explain Feistel structures for encryption and decryption	10	CO1	L2
	Output (plaintext)			
	$\begin{bmatrix} RD_{17} = LE_0 & LD_{17} = RE_0 \\ \uparrow & \uparrow \end{bmatrix}$			
	Input (plaintext) $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			
	Round 16			
	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			
	$ \begin{array}{c} \text{Round d} \\ \text{L} \\ \text{L} \\ \text{L} \\ \text{Round d} \end{array} $			
	$ \begin{array}{ c c c c c }\hline LE_2 & RE_2 & RE_2 & RD_{14} = LE_2 \\ \hline \end{array} $			
	· •			
	· · ·			
	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			
	Sound			
	$\begin{array}{c cccc} LL_{15} & RE_{15} \\ \hline LD_1 = RE_{15} & RD_1 = LE_{15} \\ \hline \end{array}$			
	$ \begin{array}{c} $			
	LE_{16} RE_{16} RE_{16} $RD_0 = RE_{16}$ $RD_0 = LE_{16}$			
	Input (ciphertext)			
	LE ₁₇ RE ₁₇ Output (ciphertext)			
	Figure 4.3 Feistel Encryption and Decryption (16 rounds)			
	The Feistel structure is the fundamental design model used in			
	many block ciphers like DES (Data Encryption Standard).			
	It allows the same algorithm to be used for both encryption and decryption , making implementation simple and efficient.			
	It is a symmetric block cipher structure.			
	The plaintext block is divided into two equal halves:			
	○ Left half (L₀)			
	○ Right half (R ₀)			
	• The cipher operates in 'n' rounds using subkeys (K ₁ , K ₂ ,			
	, \mathbf{K}_{n}) derived from the main key.			
	Feistel Encryption Process Let the plaintext block be divided into LOL OLO and POP OPO			
	Let the plaintext block be divided into L0L_0L0 and R0R_0R0. For each round \mathbf{i} ($1 \le \mathbf{i} \le \mathbf{n}$):			
	Li=Ri-1			
	Ri=Li−1⊕F(Ri−1,Ki)			
	Where:			
	• F = round function (a complex function involving			
	substitution, permutation, etc.)			
	• Ki = subkey for round <i>i</i>			
	• \bigoplus = bitwise XOR operation			
	After the last round (n rounds):			
	• The final output is (R_n, L_n) — sometimes swapped to maintain symmetry.			
	mamam symmeny.		<u> </u>	<u> </u>

	Esistal Dassumtian	Duccess			
	Feistel Decryption	the same structure as encryption, except the			
	subkeys are used i	* * * * * * * * * * * * * * * * * * *			
	For each round i (n				
	Tor each round I (II	Ri-1=Li			
	Since XOR is rever	$Li-1=Ri \bigoplus F(Li, Ki)$ sible, and the structure is symmetric, the same			
	algorithm works bo				
	Key Characteristic	•			
	Feature	Description			
		Same process for encryption and decryption (onl			
1	•				
	Block Structure	Operates on fixed-size blocks (e.g., 64-bit in DE			
	Round Function F	Provides confusion and diffusion.			
	Flexibility	Any function F can be used as long as the struct			
	Security	Depends on number of rounds and complexity o			
	,				
4		thm. Perform encryption and decryption using	10	CO2	L3
	RSA algorithm with	P=3, Q=11, C=3 and M=9.			
		ic (public-key) cryptosystem based on the hardness			
		omposite number n=pq			
	• Public key: (
	• Private key: Encryption: C≡Me(n	(n,d) with $d \equiv e^{-1} \pmod{(n)}$			
	Decryption: C=W (n Decryption: M≡C ^d (n				
	Key Generation (
	1. Choose two p	primes p,q			
	2. Compute n=1				
		ler's totient: $\phi(n)=(p-1)(q-1)$			
	1	c exponent e such that			
	1 \ /	and $gcd(e,\phi(n))=1$ e private exponent d as the modular inverse:			
	d≡e ⁻¹ (modφ(1				
	Worked Example				
	-	=3 (they've called it C=3C=3C=3 in the question, but			
		onent), and plaintext M=9			
	a) Compute n and ϕ				
	• n=pq=3×11=3				
	 φ(n)=(p−1)(q b) Check e and find 				
	,				
		gcd(3,20)=1 ✓ valid that 3d≡1(mod20)			
		$=21\equiv 1 \pmod{20} \rightarrow \mathbf{d}=7$			
	Public key: $(n,e)=(33)$	· · · · · · · · · · · · · · · · · · ·			
	Private key: (n,d)=(3				
	c) Encrypt M=9				
	$C \equiv M^e(\text{modn}) = 9^3 \text{mod}$	133			
	• 9 ² =81				
	 9³=81×9=729 729 mod 33: 				
		33^22−726 29−726⇒C=3			
	d) Decrypt C=3	2, 120-0 3			
		$133M \cdot \text{equiv } C^{d} \cdot \text{pmod}\{n\} = 3^{7} \cdot \text{bmod}$			
	$33M \equiv Cd(modn) = 37m$				
	33111 Cu(IIIOuii) 3711				
	Compute stepwise (m				

			1	
	Final Answer • Ciphertext: C=3C=3C=3 • Decrypted Plaintext: M=9M=9M=9			
5	Explain Diffie Hellman key exchange algorithm with example	10	CO2	L2
5	Source A Destination B Figure 9.4 Public-Key Cryptosystem: Authentication and Secrecy The Diffie—Hellman (DH) algorithm is a key exchange technique used to securely share a secret key between two parties (say, Alice and Bob) over an insecure communication channel. It was the first practical public-key exchange algorithm, proposed by Whitfield Diffie and Martin Hellman in 1976. Purpose It allows two users to generate a shared secret key that can then be used for symmetric encryption (e.g., AES, DES) — without ever directly transmitting the key. Basic Idea Both users agree on two public values: A prime number p A primitive root g (or generator) modulo p Each user selects a private (secret) key, computes a public key using g and p, and then exchanges it. Using the received public key, both compute the same shared secret key independently. Mathematical Steps Step 1: Publicly agree on: Prime number p and primitive root g Step 2: Each selects private key: Alice chooses a private key a Bob chooses a private key a Bob chooses a private key b Step 3: Compute public keys: Age mod p Begb mod p Begb mod p Begb mod p Both get the same key since: Bamodp=(gb)amod p=gab mod p=(gab)amod p=(gab)amod p=Ab mod Example Let: Publicly known values: p=23 g=5 Step 1: Choose private keys Alice's private keys Alice's private keys	10	CO2	L2
	Bob's private key: b=15			

Step 2: Compute public keys A=gamod p $=56 \mod 23$ $\rightarrow A = 8$ $B=g^b \mod p=$ $5^{15} \mod 23$ \rightarrow B = 19 Step 3: Exchange public keys (A=8, B=19) Step 4: Compute shared secret key Alice computes: K=Bamodp =196 mod 23 $\rightarrow K = 2$ **Bob computes:** K=A^b mod p=8¹⁵ mod 23 $\rightarrow K = 2$ Shared Secret Key = 2Advantages Securely establishes a secret key over a public network. Key is never transmitted directly. Limitation Vulnerable to Man-in-the-Middle (MITM) attack if authentication is not used. Explain how authentication and confidentiality is ensured in public 10 CO₂ L2 6 key cryptosystem Source A Destination B PU_b PU_a Figure 9.4 Public-Key Cryptosystem: Authentication and Secrecy A Public Key Cryptosystem (PKC) uses a pair of keys: A public key (shared openly) A private key (kept secret) It provides two major security services: Confidentiality – ensuring that only the intended receiver can read the message. **Authentication** – ensuring that the sender's identity is genuine. Examples of PKC: RSA, Diffie-Hellman, ECC, etc. Confidentiality **Definition:** Confidentiality ensures that the **message content remains secret** and is not disclosed to unauthorized users. **How It Works in PKC:** 1. The sender encrypts the plaintext using the receiver's public kev. $C=E_{KUB}(M)$ where E_{KUB} is the receiver's public key. 2. Only the receiver, who has the corresponding private key K_{RB}, can decrypt it: $M=D_{KRB}(C)$

3. Since only the receiver knows their private key, no one else can decrypt the message → confidentiality achieved.

Example:

- Alice wants to send a secret message to Bob.
- Bob's public key = K_{UB} , private key = K_{RB} .
- Alice encrypts message M using K_{UB}.
- Bob decrypts it using K_{RB}.
- Even if an attacker intercepts C, it cannot be decrypted without Bob's private key.

Authentication

Definition:

Authentication ensures that the **sender is who they claim to be** and the message is not forged.

How It Works in PKC:

1. The **sender encrypts** the message (or its hash) using their **own private key**:

 $C=E_{KRA}(M)$; K_{RA} is Alice's private key.

2. The receiver decrypts the ciphertext using the sender's public key:

 $M=D_{KUA}(C)$

- 3. If decryption is successful and produces a valid message, it proves that:
 - o The message was encrypted using Alice's private key.
 - Therefore, it must have come from Alice → Authentication achieved.

Example:

- Alice signs a message using her **private key**.
- Bob verifies it using Alice's **public key**.
- Since only Alice possesses her private key, Bob is assured that the message is genuinely from Alice.

4) Combining Both: Authentication + Confidentiality

Both services can be combined:

- 1. **Step 1 Authentication:** Sender (Alice) encrypts message with her **private key** → ensures identity.
- 2. Step 2 Confidentiality: Then encrypts the result with the receiver's public key → ensures secrecy.

At receiver's end:

- 1. Receiver decrypts with **own private key** K_{RB}.
- 2. Then decrypts with sender's public key K_{UA}

 $M=D_{KUA}(D_{KRB}(C))$

This guarantees both:

- Message came from Alice (authentication)
- Message can be read only by Bob (confidentiality)

Conclusion

Public Key Cryptography provides:

- Confidentiality → using receiver's public key
- Authentication → using sender's private key
 By combining both encryption steps, secure and authenticated communication is achieved.