

USN

Internal Assessment Test 1 – November-2025

Sub: DATA STRUCTURES AND APPLICATIONS Sub Code: BCS304 Branch: AIML & CSML

Date: Duration:
90

minutes
Max Marks: 50 Sem/Sec: III -A, B, C OBE

Answer any FIVE FULL Questions MARKS CO RBT

1 a Define Data Structures. Explain the classification o f data structures with a neat diagram. 6 1 L2

 b Differentiate structures and unions. 4 1 L2

2

a
Explain various memory allocation techniques? Explain how memory can be dynamically allocated

using malloc().
4 1 L2

b
Write a C Functions t o implement pop, push and display operations for

stacks using arrays.
6 1 L3

3

Evaluate the following postfix expressions,

1. abc+*de/- where a=5, b=6, c=2, d=12, e=4

2.AB+CDE-+/ where A=5, B=5, C=4, D=7, E=1

10 1 L3

4
Explain linked singly linked with example:

i) Insert a node o f the beginningii)Delete a node at the front iii) Display
10 3 L2

5 What is Ciculay queue? How insertion () , deletion () and display ()done on circular queue. 10 2 L2

6

Discuss Sparse matrix? Give the triplet form o f a given matrix and find its transpose

10 1 L3

CI CCI HOD

Internal Assessment Test 1 –November-2025

Sub: DATA STRUCTURES AND APPLICATIONS Sub Code: BCS304 Branch: AIML & CSML

Date: Duration:
90

minutes
Max Marks: 50 Sem/Sec: III -A, B, C OBE

Answer any FIVE FULL Questions MARKS CO RBT

1 a

Define Data Structures. Explain the classification o f data structures with a neat diagram.

DATA STRUCTURE2M

Data structure is a representation of the logical relationships existing between individual
elements of data. A data structure is a way of organizing all data items that considers not only

the elements stored but also their relationship to each other.

The logical or mathematical model of a particular organization of data is called a data

structure.

BASIC TERMINOLOGY 1M

Data:

Data items:

 Entity:

Field:

File:

The non-primitive data structures is further classified into 1M(daigram)

6 1 L2

 1. Linear Data Structure 3M

2. Non-linear Data Structure 3M

1. Linear Data Structure: A data structure is said to be linear if its elements form a sequence or a

linear list. There are basically two ways of representing such linear structure in memory. a. One way

is to have the linear relationships between the elements represented by means of sequential memory

location. These linear structures are called arrays.
b. The other way is to have the linear relationship between the elements represented by means of

pointers or links. These linear structures are called linked lists. The common examples of linear data

structure are Arrays, Queues, Stacks, Linked lists

2. Non-linear Data Structure: A data structure is said to be non-linear if the data are not arranged in

sequence or a linear. The insertion and deletion of data is not possible in linear fashion. This

structure is mainly used to represent data containing a hierarchical relationship between elements.

Trees and graphs are the examples of non-linear data structure.

 b

Differentiate structures and unions.

Solution

3M

4 1 L2

Example Declaration 1M

structure

struct student { int id; char name[20]; float marks; };

union

union data { int i; float f; char ch; };

2 a

Explain various memory allocation techniques? Explain how memory can be dynamically

allocated using malloc().

Solution

various memory allocation techniques

Static Memory Allocation 1M

4 2 L2

Static Memory is allocated for declared variables by the compiler. The address can be found

using the address of operator and can be assigned to a pointer. The memory is allocated during

compile time.

Memory allocation 1M

Memory allocation done at the time of execution(run time) is known as dynamic memory

allocation. Functions calloc() and malloc() support allocating dynamic memory. In the Dynamic
allocation of memory space is allocated by using these functions when the value is returned by

functions and assigned to pointer variables.

Dynamic Memory Allocation functions in C: 2M

malloc()

Related header file is stdlib.h>

These functions provide a complete set of memory allocation, reallocation, deallocation, and heap

management tools.

malloc()

Syntax:

ptr = (cast-type*) malloc(byte-size);

Here, ptr is pointer of cast-type. The malloc() function returns a pointer to an area of memory with

size of byte size. If the space is insufficient, allocation fails and returns NULL pointer.

Example:

ptr = (int*) malloc(100 * sizeof(int));

b

Write a C Functions to implement pop, push and display operations for

stacks using arrays.

2(each function)*3=6

Solution:- 2(each function)*3=6

int stack[MAX];

int top = -1;

// Function to push an element into the stack
void push(int value) {

 if (top == MAX - 1) {

 printf("Stack Overflow! Cannot push %d\n", value);

 } else {

 top++;

 stack[top] = value;

 printf("%d pushed into the stack.\n", value);

 }

}

// Function to pop an element from the stack
void pop() {

 if (top == -1) {

 printf("Stack Underflow! No elements to pop.\n");

 } else {

 printf("%d popped from the stack.\n", stack[top]);

 top--;

 }

}

// Function to display all elements in the stack

void display() {

 if (top == -1) {
 printf("Stack is empty.\n");

 } else {

 printf("Stack elements are:\n");

 for (int i = top; i >= 0; i--) {

 printf("%d\n", stack[i]);

 }

 }

}

6 1 L3

https://www.geeksforgeeks.org/c/address-function-c-cpp/

3

Evaluate the following postfix expressions,

2. abc+*de/- where a=5, b=6, c=2, d=12, e=4

3. AB+CDE-+/ where A=5, B=5, C=4, D=7, E=1

Solution

Answer 1: 37 5M

Answer 2: 1 5M

10 2 L3

4

Explain linked singly linked list with example:

i) Insert a node o f the beginningii)Delete a node at the front iii) Display

Solution -

singly linked list explaination 2.5M

-A linked list is a dynamic data structure where each element (called a node) is made up of two items

- the data and a reference (or pointer) which points to the next node. A linked list is a collection of

nodes where each node is connected to the next node through a pointer.

The following examples of linked lists indicate that the nodes of a list need not occupy

adjacent elements in the arrays INFO and LINK, and that more than one list may be

maintained in the same linear arrays INFO and LINK. However, each list must have its own

pointer variable giving the location of its first node.

START=9 INFO[9]=N

LINK[3]=6 INFO[6]=V
LINK[6]=11 INFO[11]=E

LINK[11]=7 INFO[7]= X

10 3 L2

LINK[7]=10 INFO[10]= I

LINK[10]=4 INFO[4]= T

LINK[4]= NULL value, So the list has ended

Defining a node structure

typedef struct listNode *listPointer typedef struct {

char data[4]; listPointer list;

} listNode;

Create a New Empty list

listPointer first = NULL

To create a New Node

MALLOC (first, sizeof(*first));

To place the data into NODE

strcpy(first→ data,”BAT”); first→ link = NULL

Function to insert a node at the beginning-2.5M

void insertAtBeginning(int value) {

 struct Node* newNode = (struct Node*)malloc(sizeof(struct Node));

 newNode->data = value;
 newNode->next = head; // Point new node to current head

 head = newNode; // Move head to new node

 printf("%d inserted at the beginning.\n", value);

}

 Function to delete a node from the front-2.5M

void deleteFromFront() {

 if (head == NULL) {

 printf("List is empty. Nothing to delete.\n");

 } else {

 struct Node* temp = head;

 head = head->next; // Move head to next node
 printf("%d deleted from the front.\n", temp->data);

 free(temp); // Free old head

Function to display the list- 2.5M

void display() {

 if (head == NULL) {

 printf("List is empty.\n");

 } else {

 struct Node* temp = head;

 printf("Linked List: ");

 while (temp != NULL) {

 printf("%d -> ", temp->data);

 temp = temp->next;

 }

 printf("NULL\n");

 }

}

5

What is Ciculay queue? How insertion () , deletion () and display ()done on circular queue.

CIRCULAR QUEUES- 2.5

It is “The queue which wrap around the end of the array.” The array positions are arranged in a

circle as shown in figure.

In this convention the variable front is changed. front variable points one position

counterclockwise from the location of the front element in the queue. The convention for rear is

unchanged.

Implementation of Circular Queue Operations

When the array is viewed as a circle, each array position has a next and a previous position. The

position next to MAX-QUEUE-SIZE -1 is 0, and the position that precedes 0 is MAX-QUEUE-

SIZE -1.

When the queue rear is at MAX_QUEUE_SIZE-1, the next element is inserted at position 0.

In circular queue, the variables front and rear are moved from their current position to the next

position in clockwise direction. This may be done using code

if (rear = = MAX_QUEUE_SIZE-1) rear = 0;

else rear++;

 Add to a circular queue 2.5M

void addq(element item)

{

rear = (rear +1) % MAX_QUEUE_SIZE; if (front == rear)

queueFull();

queue [rear] = item;

}

Delete from a circular queue 2.5M

element deleteq()

{ /* remove front element from the queue */ element item;

if (front == rear)

return queueEmpty(); /* return an error key */ front = (front+1)% MAX_QUEUE_SIZE;

return queue[front];

}

10 2 L2

Display 2.5M

Steps:
If queue is empty, display message.

Start from front, print elements until you reach rear.

Use (i + 1) % MAX to move circularly.

6

Discuss Sparse matrix? Give the triplet form o f a given matrix and find its transpose

SPARSE MATRIX REPRESENTATION 2M

• We can classify uniquely any element within a matrix by using the triple . Therefore, we
can use an array of triples to represent a sparse matrix.

• Sparse matrix contains many zero entries.

• When a sparse matrix is represented as a 2-dimensional array, we waste space For ex, if

100*100 matrix contains only 100 entries then we waste 9900 out

4M

10 3 L3

CI CCI HOD

