Qqﬁ%ARS .,
&

*
-

CMRIT

* CMR INSTITUTE OF TECHNOLOGY, BENGALURU.
ACCREDITED WITH A+ GRADE BY NAAC

Internal Assessment Test 1 — October 2025
SEPM -BCS501

Mar

Developers must protect against threats such as:

Data breaches

SQL injection

Cross-site scripting (XSS)

Unauthorized access

Example: E-commerce sites use encryption (HTTPS) to secure user transactions.

6. Aesthetic and Usability-Oriented

WebApps must have an attractive user interface (UI) and be easy to navigate.
Good user experience (UX) design is essential for engaging users and maintaining
retention.

Example: Canva and Trello combine visual appeal with functionality.

7. Cross-Platform Compatibility

WebApps run on multiple devices and operating systems (Windows, macOS,
Android, 108, etc.) using browsers.

They adjust automatically through responsive design.

Example: You can use Google Docs on a phone, tablet, or laptop.

8. Distributed and Multi-Tiered

Most WebApps follow a client-server architecture with:
Client-side: Runs in browser (HTML, CSS, JavaScript)
Server-side: Handles logic, database, and communication
This structure allows scalability and modular development.

SIL. Answer any FIVE FULL Questions ks CO RBT
Explain Unique Nature of WebApps
1. Network-Intensive
WebApps depend on the internet or an intranet.
They are network-centric, meaning they rely on continuous connectivity between
the client (user’s browser) and the server (web server).
Example: Gmail, Google Drive, or Amazon all require an internet connection to
function.
2. Content-Driven
The content (text, images, videos, data, etc.) forms the core of most WebApps.
They are often designed to deliver, manage, and update content dynamically using
databases.
Example: News websites, blogs, and learning platforms update content frequently.
3. Continuous Evolution
Unlike traditional software, WebApps are continuously updated on the server
without requiring users to reinstall or update anything on their systems.
Example: Facebook or LinkedIn frequently roll out new features seamlessly.
4. Immediacy
WebApps provide instant access—users only need a browser and internet
connection, no installation required.
This enables real-time updates and communication.
Example: Online banking, ticket booking, or food delivery apps.
5. Security

Q1 | Since WebApps handle sensitive data online, security is a major concern. 10 | COl L2

Q2

Describe the Waterfall and Spiral models in Software Engineering and explain
how they differ from each other.

Waterfall Model
Definition:
The Waterfall Model is a linear and sequential software development model
where each phase must be completed before the next begins.
It flows steadily downwards—Ilike a waterfall—through different phases.
Phases of the Waterfall Model:
1. Requirement Analysis:
All software requirements are gathered and documented.
2. System Design:
The system architecture and design are created based on requirements.
3. Implementation (Coding):
Developers write the actual code.
4. Testing:
The software is tested to find and fix defects.
5. Deployment:
The product is delivered or installed for use.
6. Maintenance:
Updates or bug fixes are done after release.
Advantages:
o Simple and easy to understand.
o Clearly defined stages and milestones.
o Works well for small, well-defined projects.
Disadvantages:
» Difficult to go back to a previous phase.
e Not suitable for projects with changing requirements.
o Working software is available only at the end of the process.

Spiral Model
Definition:
The Spiral Model is a risk-driven iterative model that combines features of
both the Waterfall and Prototyping models.
It develops the software in repeated cycles (spirals), where each spiral represents
one phase of the software process.
Phases of the Spiral Model:
Each spiral has four main stages:
1. Planning:
Identify objectives, alternatives, and constraints.
2. Risk Analysis:
Evaluate and reduce potential risks.
3. Engineering (Development & Testing):
Build and test the product incrementally.
4. Evaluation:
Review the results with the customer and plan the next iteration.
Advantages:
o Handles changing requirements effectively.
o Focuses on risk management.
e Allows early detection of problems through repeated prototyping.
Disadvantages:
e Complex and expensive to manage.
o Requires expertise in risk analysis.
e Not suitable for small projects.

Difference between Waterfall and Spiral Models

10

COl

L1

Aspect Waterfall Model Spiral Model

Development Type Linear and sequential Iterative and evplutiohary

Flexibility Rigid; difficult to change Flexible; allows changes

Risk Handling Minimal risk analysis Extensive risk gnalysis

Customer Only at the beginning and end Continuous invplvemient

Involvement

Cost & Time Les§ expensive and faster for small Mo.re expensive, suitgble for|large
projects projects

Output One final product at the end Product evolves throygh iterations

Best Used For Small, well-defined projects Large, complex, hightrisk prpjects

1.Define
project goals
and scope

2.ldentify
and mitigate
project risks

3.Develop and

4.Assess code software
progress and incrementally
adjust plans

Explain key steps involved in building a requirement model, and how do they
contribute to the software development process?

10 | CO2 L2
1. Requirement Elicitation

Purpose: Collect requirements from stakeholders.
Activities:

e Interviewing users

e Conducting surveys or workshops
e Observing work processes

o Studying existing systems

Contribution:
This step ensures we clearly understand the customer’s expectations and real
problems.

2. Requirement Analysis
Purpose: Examine, clarify, and prioritize the gathered requirements.
Activities:

e Remove conflicts and ambiguities
o Identify essential vs optional features
o Understand constraints (e.g., cost, time, technology)

Contribution:
Helps refine requirements into clear and feasible statements that developers and
users agree on.

3. Requirement Specification
Purpose: Document the agreed requirements in a standardized, structured form.
Output: SRS (Software Requirements Specification) document
What it includes:
e Functional requirements (what the system should do)
o Non-functional requirements (performance, security, usability)
o Interface and constraints

Contribution:
SRS acts as a formal contract between stakeholders and the development team.

4. Requirement Modeling
Purpose: Create visual models to represent system behavior & structure.
Common Models:
e Use Case Diagrams — show interactions between user and system
o Data Flow Diagrams (DFD) — show how data moves through the system
o ER Diagrams — show data relationships
o Activity/Sequence diagrams — show workflows and operations
Contribution:

Makes complex system behavior easier to understand and validate.
Models reduce misunderstandings by providing a visual representation.

5. Requirement Validation

Purpose: Ensure the documented requirements are correct, complete, and
acceptable.

Activities:

e Reviews and walkthroughs
e Prototype demonstrations
e Confirmations with stakeholders

Contribution:
Prevents costly changes later by ensuring everyone agrees before development
starts.

Q4

Explain Negotiating requirements and Validating requirements.
Negotiating Requirements (Simple Answer)

Negotiating requirements means discussing and resolving differences between
stakeholders to decide which requirements should be included in the project.
Different users may want different features, so the team meets with them to settle
conflicts, set priorities, and agree on a final list of requirements that is realistic
and acceptable to everyone.

Key Points:
e Resolve conflicts among requirements

e Decide priorities (what is important and what is not)
o Finalize requirements that everyone agrees on

Validating Requirements (Simple Answer)

Validating requirements means checking whether the requirements are correct,
complete, and clearly written.

The goal is to ensure that the requirements match the customer’s needs and there
are no mistakes before development starts.

Key Points:
e Check if requirements are clear and correct
o Ensure nothing important is missing
e Confirm that users agree with the requirements

One-Line Difference

o Negotiation: Fixes conflicts and finalizes what to include.
o Validation: Checks if the final requirements are correct and complete.

10

CO2

L1

Q5

Develop a complete use case for the following activity: Withdrawing cash at an
ATM

Use Case: Withdraw Cash

10

CO2

L3

Use Case Name Withdraw Cash

Actor Customer (ATM Card Holder)

System ATM Machine / Bank Server

Goal To allow the customer to withdraw cash securely
Preconditions

e The customer must have a valid ATM card.

e The ATM must be connected to the bank server.

e The customer must have sufficient balance.
Main Flow (Normal Scenario)
Customer inserts ATM card into the machine.
System displays “Enter PIN” screen.
Customer enters PIN.
System verifies the PIN.
System displays menu options.
Customer selects “Withdraw Cash”.
Customer enters the amount to withdraw.
System checks whether balance is available.
. System dispenses the cash.

10. System prints the receipt.

11. System returns the ATM card.

12. Customer takes the card, cash, and receipt.
Alternative Flows

OO N U AW

Condition Action

Invalid PIN Systqm displays error and asks to re-enter PIN. After 3 wr
card is blocked.

Insufficient System displays “Insufficient Funds” and returns to menu.

Balance

ATM has No Cash System displays “ATM Out of Service” and transaction is car
Postconditions

e The withdrawal amount is deducted from the customer’s account.
e Transaction details are recorded.

Q6

Based on the use case developed in Q5 (withdrawing cash at an ATM) draw the
corresponding class, use case, and flow diagram.

e . e

”

w

W

n

4

#

v B

v :

<< gimmad = :
Balance Deposut
< Leprdis =

)0

10

Cco3

L3

ATM

+ocation
+managedBy

+identifies()
transactions()

Forget Pin

Start Session

Bank

+code
+address

+manages()
+maintains()

+name
+address

+owns()

Account

*ype
+owner

+checkBalance()

DutatCond WithdrawalTransaction
+cardNo 2
rownedBy +amount

S abeaaeD) +withdrawal()

ATMtransaction

+ransactionid
+date
*ype

+update()

TransferTransaction

+amount
+accountNo

ATM Withdrawal Activity Diagram

Get Cash

Enter Pin

Wrong
Pin

Requset Amount to

Withdraw

Processing

Withdrawal

Authorize Card

