USN					

Internal Assessment Answer Script – Sep 2025

Sub:	Data Security and Privacy						Sub Code:	BAD703	Branch	AIM AIM	ML/CSE ML		
Date:	29/09	9/25	Duration:	n: 90 min Max Marks: 50 Sem/Sec VII /A, B						OB	BE		
	•		<u> </u>	Answer any F	IVE FULL Que	estion	<u>is</u>			M	CO	RB T	
1			methods o	of secure ke	y storage and	d the	ir challeng	ges (5M+ 5M	()	10M	CO3		
	_	storag		_	f cryptograph . Secure met	-	_	-					
	essentia	al. Go	-	nagement ii	ncludes secur		-	-					
	Metho	ds of S	Secure Key	Storage									
	1.	Avoid	ding Key S	_									
		0	•	_	henever need			ed permanent	ly.				
	2	o Softw	example: vare Storag		ys in secure c	OHIII	iumcanom.						
	2.	0	_	stored in fil	es, databases,	or a	pplications,	usually enci	rypted				
		0			ystem protect	ions	and access	control.					
	3. Hardware Storage												
	 Keys are stored inside secure hardware such as: Hardware Security Modules (HSMs) 												
					•								
	Trusted Platform Modules (TPMs)Smartcards / USB tokens												
					es in mobile								
		0	Keys nev inside the		secure hardw	are b	ooundary; o	perations are	done				
	Challer	nges ir	n Key Stora	ge									
	1.	Avoid	ding Key S	_									
		0	-		g-term keys.	1	,·						
	2	o Softw	Requires vare Storag		y random num	ıber	generation.						
	2.	0	_	•	re and insider	atta	cks.						
		0	Weak pas	ssphrases or	insecure back	kups	can lead to	leakage.					
	_	0			pies are delete	ed.							
	3.		ware Stora	_	oo nhysical n	notoo	tion						
		0	-	-	es physical pross may cause			s of keys					
		0			and firmware	-		-					
		0			of non-expor	_	-						

Key Storage Risk Factors

Security depends on both device type and environment:

Zo	Device	Environment	Security level				
ne							
1	General-purpose	Uncontrolled	Lowest security (e.g., PC in public place)				
2	General-purpose	Controlled	Improved by physical/network security				
3	Specialized device	Uncontrolled	Exposed to attacks (e.g., ATM machines)				
4	Specialized device	Controlled	Highest security (e.g., HSM in data centers)				

2 a What are the principles of security in cryptography? Explain with examples. (3M+2M)

5M | CO1 | L2

Cryptography serves as the cornerstone of information security, ensuring that data remains confidential, unaltered, and accessible only to authorized entities. The fundamental principles of cryptography.

1. Confidentiality

Confidentiality ensures that information is accessible only to those authorized to access it. This is achieved through encryption, which transforms readable data (plaintext) into an unreadable format (ciphertext) using an encryption algorithm and a key. Only individuals possessing the corresponding decryption key can revert the ciphertext back to its original plaintext form.

Example: In secure email communication, the content of the email is encrypted before transmission. Only the intended recipient, who possesses the decryption key, can decrypt and read the email content.

2. Integrity

Integrity ensures that information remains accurate and unaltered during storage or transmission. Cryptographic hash functions are commonly used to verify data integrity. A hash value (checksum) is generated from the original data; any alteration in the data will result in a different hash value, indicating potential tampering.

Example: When downloading software, the website may provide a hash value. After downloading, the user can compute the hash of the downloaded file and compare it with the provided hash to ensure the file has not been altered.

3. Authentication

Authentication verifies the identity of entities involved in communication. This ensures that the parties are who they claim to be. Techniques such as digital signatures and certificates are employed to authenticate users and devices.

Example: In online banking, users authenticate themselves using usernames and passwords, and transactions may require additional authentication methods like OTPs (One-Time Passwords) sent to registered mobile numbers.

4. Non-repudiation

Non-repudiation ensures that an entity cannot deny the authenticity of their signature on a document or the sending of a message itself. Digital signatures provide proof of the origin and integrity of data, preventing the sender from denying their actions.

Example: In legal contracts, digital signatures are used to ensure that the signatory cannot later deny having signed the document.

5. Access Control

Access control mechanisms restrict access to resources to authorized users only. This principle ensures that sensitive information and systems are protected from

	unauthorized access and potential misuse.			
	Example: In a corporate environment, access to confidential files is restricted based on user roles; only authorized personnel can access certain documents.			
2 b	Describe the working of the Playfair cipher and encrypt the message "KEEP DATA SAFE" using the key "NETWORK" (1M+4M)	5M	CO1	L3
	 What is Playfair Cipher? It's a cipher that encrypts letters in pairs (digrams) instead of one letter at a time. Makes it harder to break than a simple substitution cipher because there are 676 possible diagrams. Uses a 5×5 matrix of letters built from a keyword. I and J share one cell in the matrix. 			
	 Rules for Encryption For each pair of letters in the message: Same row: replace each letter with the one to its right (wrap around). Same column: replace each letter with the one below (wrap around). Different row & column: form a rectangle and replace each letter with the one in its row and the column of the other letter. Repeating letters: separate them with X. Odd letters: add X at the end. 			
	3. Encrypting "KEEP DATA SAFE" with key "NETWORK" Step 1: Build 5×5 matrix using the keyword "NETWORK"			
	 Write the keyword first (remove duplicates): N E T W O R K Fill the remaining letters (I/J together): A B C D F G H I/J L M P Q S U V X Y Z N E T W O R K R K A B C D F G H I/J L M P Q S U V X Y Z L M P Q S U V X Y Z Step 2: Prepare plaintext Remove spaces → KEEPDATASAFE Split into digraphs → KE EP DA TA SA FE 			
	 Step 3: Encrypt each digraph using rules KE → K and E are in the same column → take letters below: K→ F, E → K → Cipher: FK EP → E and P are in different rows and columns → rectangle rule: E → T, P → M → Cipher: TM DA → D and A → rectangle → D→G, A→D → Cipher: GD TA → T and A are in same column → T→A, A→G → Cipher: AG SA → S and A → rectangle → S→Q, A→C → Cipher: QC FE → F and E are in same column → F→K, E→E → Cipher: KE Step 4: Combine ciphertext			
	FŘ TM GD AG QĈ KE	107.5	GOA	1.0
3	Describe the RSA algorithm and solve with an example (choose $p=11,q=17,e=7,message=88)$ (4M+6M)	10M	CO2	L3
	 RSA (Rivest–Shamir–Adleman) is a public-key cryptosystem used for secure data transmission. Introduced in 1977 by Ron Rivest, Adi Shamir, and Len Adleman. 			

- > Based on the **difficulty of factoring large prime numbers**.
- > Uses a **public key** for encryption and a **private key** for decryption.

Steps of RSA Algorithm:

- 1. Select two prime numbers p and q, where $p \neq q$.
- **2.** Compute $n = p \times q$.
- **3.** Compute Euler's totient: $\phi(n) = (p-1)(q-1)$.
- **4.** Choose e such that $1 < e < \phi(n)$ and $\gcd(e,\phi(n)) = 1$.
- 5. Compute $d=e^{-1} \mod \phi(n)$, i.e., $d\cdot e\equiv 1\pmod {\phi(n)}$.
- **6.** Public key: $\{e, n\}$, Private key: $\{d, n\}$.
- 7. Encryption:

$$C = M^e \mod n$$

where M = plaintext, C = ciphertext.

8. Decryption:

$$M=C^d \mod n$$

Step 1: Key Generation

- p = 11, q = 17
- $n = p \cdot q = 11 \cdot 17 = 187$
- $\phi(n) = (p-1)(q-1) = 10 \cdot 16 = 160$
- Choose e=7, since $\gcd(7,160)=1$
- Compute d:

$$7 \cdot d \equiv 1 \pmod{160} \implies d = 23$$

Keys:

- Public key = $\{e, n\} = \{7, 187\}$
- Private key = $\{d, n\} = \{23, 187\}$

Step 2: Encryption

- Plaintext = M=88
- Ciphertext:

$$C = 88^7 \mod 187$$

Using modular exponentiation:

- $88^2 \mod 187 = 77$
- $88^4 \mod 187 = 132$
- $88^7 = 88 \cdot 77 \cdot 132 \mod 187 = 11$

$$C = 11$$

Step 3: Decryption Ciphertext C=11Plaintext: $M = 11^{23} \mod 187$ Using modular exponentiation: $11^2 \mod 187 = 121$ $11^4 \mod 187 = 55$ $11^8 \mod 187 = 33$ $11^{16} \mod 187 = 154$ $11^{23} = 11 \cdot 121 \cdot 55 \cdot 33 \cdot 154 \mod 187 = 88$ M = 88Ciphertext after encryption: C=11 **Decrypted plaintext:** M=88 4 Explain the structure of the Feistel cipher with a neat diagram. Illustrate its 10M working with a suitable example (7M+3M) Feistel cipher structure was introduced by **IBM** (**Lucifer cipher**) and later used in DES. It is a block cipher structure that is still widely used, even in Format-**Preserving Encryption (FPE).** The key property: encryption and decryption use the same structure (only the order of round keys is reversed). Input (plaintext) Output (plaintext) u characters v characters u characters v characters Round r-1 Round 0 C_0 $\overline{B_1}$ B_1 Round r-2 Round 1 C_1 $A_2 \leftarrow C_2$ B_{r-2} C_{r-2} Round r-2 Round 1 C_{r-2} B_{r-1} B_{r-1} Round r-1 Round 0 Output (ciphertext) Input (ciphertext) (a) Encryption (b) Decryption Figure 7.12 Feistel Structure for Format-Preserving Encryption

of 3. Also, show the decryption process (2M+3M)	J1 V1		
Ciphertext = (A ₂ ,B ₂) = (0000,0101) = 00000101 5a Explain the Caesar cipher. Encrypt the message "SECURITY" using a shift key	5M	CO1	13
$ullet = 1100 \oplus (0000 \oplus 1001) \ ullet = 1100 \oplus 1001 = 0101$			
$ullet B_2 = A_1 \oplus (B_1 \oplus K_2)$			
$ullet A_2 = B_1 = 0000$			
Round 2:			
$ullet = 1010 \oplus 1010 = 0000$			
$ullet$ = 1010 \oplus (1100 \oplus 0110)			
$egin{array}{ccc} A_1=B_0=1100 \ & B_1=A_0\oplus (B_0\oplus K_1) \end{array}$			
Round 1: $\bullet A_1 = B_0 = 1100$			
$ullet$ Round keys: $K_1=0110$, $K_2=1001$ $ullet$ Round function: $F(R,K)=R\oplus K$			
$ullet$ Split: $A_0=1010,B_0=1100$			
• Plaintext (8 bits): 10101100			
- Subreys are applied in levelse order.			
 Similar to encryption, but addition is replaced by subtraction. Subkeys are applied in reverse order. 			
Decryption Process:			
 On odd rounds, substitution is applied on the right half (B). 			
 On even rounds, substitution is applied on the left half (A). 			
$B_i = A_{i-1} + FK(B_{i-1},K_i) \pmod{radix^m}$			
$A_i=B_{i-1}$			
For round i :			
Encryption Process (per round):			
 Each round applies a round function FK with a subkey. 			
 The block passes through r rounds. 			
• B_0 (right half, length v)			
 The plaintext block of size n is divided into two halves: A_0 (left half, length u) 			

- The Caesar cipher is one of the earliest and simplest substitution ciphers.
- Each letter in the plaintext is replaced by a letter shifted by a fixed number of positions in the alphabet.
- If the shift key = k, then the encryption rule is:

$$C = (P + k) \mod 26$$

• The decryption rule is:

$$P = (C - k) \mod 26$$

where,

- P = position of plaintext letter (0–25)
- C = position of ciphertext letter (0–25)
- k = shift key

Plaintext message: SECURITY

Shift key (k): 3

Plaintext	S	E	C	U	R	I	T	Y
Position	18	4	2	20	17	8	19	24
+ Key (3)	21	7	5	23	20	11	22	1
Cipher	V	Н	F	X	U	L	W	В

Ciphertext: VHFXULWB

Decryption Process

Apply formula $P = (C - k) \mod 26$

Ciphertext	V	H	F	X	U	L	W	В
Position	21	7	5	23	20	11	22	1
- Key (3)	18	4	2	20	17	8	19	24
Plaintext	S	Е	C	U	R	Ι	T	Y

Recovered Plaintext: SECURITY

Explain the Blum Blum Shub (BBS) generator. Generate the first four pseudorandom numbers using the parameters p=7, q=11, X₀ = 3.(2M+3M)

> The **Blum Blum Shub (BBS)** generator is a cryptographically secure pseudorandom bit generator (CSPRBG).

➤ It was proposed by **Blum, Blum, and Shub** (1986) and is considered one of the strongest pseudorandom generators because its security is based on the difficulty of factoring large numbers.

CO2 L3

5M

The working principle is as follows:

1. Choose two large prime numbers p and q such that:

$$p \equiv q \equiv 3 \pmod{4}$$

Example: p = 7, q = 11.

2. Compute

$$n = p \times q$$

- 3. Choose a random seed s, such that s is relatively prime to n.
- 4. Initialize:

$$X_0 = s^2 \pmod{n}$$

5. Generate the sequence using the recurrence relation:

$$X_i = (X_{i-1})^2 \pmod{n}, \quad i \ge 1$$

6. The output bit at each stage is:

$$B_i = X_i \pmod{2}$$

- The sequence of least significant bits forms the pseudorandom sequence.
- The BBS generator passes the **next-bit test**, meaning that given k bits of output, the (k+1)th bit cannot be predicted with probability significantly greater than 0.5.
- Security depends on the hardness of factoring n.

$$p = 7$$
, $q = 11$, $X_0 = 3$

1. Compute modulus:

$$n = p \times q = 7 \times 11 = 77$$

- 2. Initialize (already given as $X_0 = 3$).
- 3. Iterations:
- Step 1:

$$X_1 = (X_0)^2 \pmod{n} = (3^2) \pmod{77} = 9$$

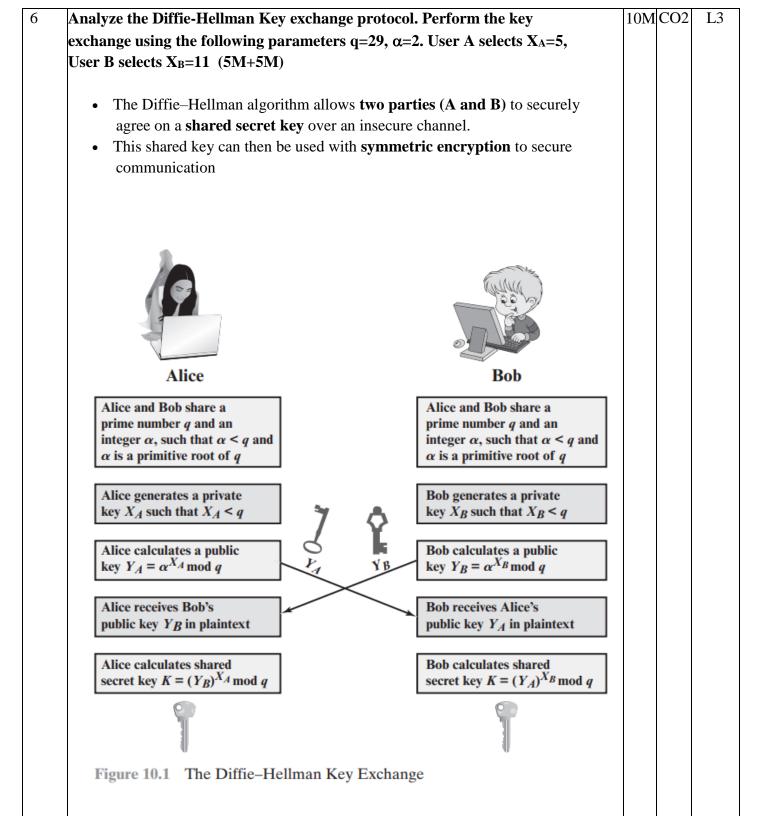
 $B_1 = X_1 \pmod{2} = 9 \pmod{2} = 1$

• Step 2:

$$X_2 = (X_1)^2 \pmod{77} = (9^2) \pmod{77} = 81 \pmod{77} = 4$$

$$B_2 = X_2 \pmod{2} = 4 \pmod{2} = 0$$

Step 3:


$$X_3 = (X_2)^2 \pmod{77} = (4^2) \pmod{77} = 16$$

 $B_3 = X_3 \pmod{2} = 16 \pmod{2} = 0$

• Step 4:

$$X_4 = (X_3)^2 \pmod{77} = (16^2) \pmod{77} = 256 \pmod{77} = 25$$

$$B_4 = X_4 \pmod{2} = 25 \pmod{2} = 1$$

The first four pseudorandom numbers (bits) are:

$$B_1 = 1$$
, $B_2 = 0$, $B_3 = 0$, $B_4 = 1$

$$K = (Y_B)^{X_A} \mod q$$

$$= (\alpha^{X_B} \mod q)^{X_A} \mod q$$

$$= (\alpha^{X_B})^{X_A} \mod q$$
 by the rules of modular arithmetic
$$= \alpha^{X_B X_A} \mod q$$

$$= (\alpha^{X_A})^{X_B} \mod q$$

$$= (\alpha^{X_A})^{X_B} \mod q$$

$$= (\alpha^{X_A})^{X_B} \mod q$$

$$= (Y_A)^{X_B} \mod q$$

$$K = (Y_B)^{X_A} \mod q$$

$$= (\alpha^{X_B} \mod q)^{X_A} \mod q$$

$$= (\alpha^{X_B})^{X_A} \mod q$$

$$= \alpha^{X_B X_A} \mod q$$

$$= (\alpha^{X_A})^{X_B} \mod q$$

$$= (\alpha^{X_A})^{X_B} \mod q$$

$$= (\alpha^{X_A})^{X_B} \mod q$$

$$= (Y_A)^{X_B} \mod q$$

by the rules of modular arithmetic

HOD Signature

1) Public parameters

- $\bullet \quad \operatorname{Prime} q = 29$
- Base (primitive root) lpha=2 These are public.

2) Each user's public value

Compute $Y_A = lpha^{X_A} mod q$ and $Y_B = lpha^{X_B} mod q$.

- $Y_A = 2^5 \mod 29 = 32 \mod 29 = 3$.
- $Y_B=2^{11} mod 29$. Compute quickly: $2^5\equiv 3$ so $2^{10}\equiv 3^2=9$. Then $2^{11}\equiv 9\cdot 2=18$. So $Y_B=18$.

Public keys: $Y_A = 3$, $Y_B = 18$.

3) Shared secret (computed by both sides)

- A computes $K=Y_B^{X_A} \bmod 29 = 18^5 \bmod 29$.

Work:
$$18^2=324\equiv 5$$
.

$$18^4 \equiv 5^2 = 25.$$

$$18^5 \equiv 18^4 \cdot 18 \equiv 25 \cdot 18 = 450 \equiv 450 - 15 \cdot 29 = 450 - 435 = 15.$$

So A gets K=15.

 $\bullet \quad \text{B computes } K = Y_{A}^{X_B} \bmod 29 = 3^{11} \bmod 29.$

Work:
$$3^2=9,\ 3^4=9^2=81\equiv 23,\ 3^8\equiv 23^2=529\equiv 7.$$

$$3^{11} = 3^8 \cdot 3^2 \cdot 3 \equiv 7 \cdot 9 \cdot 3 = 7 \cdot 27 = 189 \equiv 189 - 6 \cdot 29 = 189 - 174 = 15.$$

So B also gets K=15.

Shared secret key = 15.