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1. Explain the stages of the Data Engineering Life Cycle, What are the main 
challenges faced at each stage? Explain various data maturity stages in data 
engineering. 
Data Engineering Life Cycle stages [4] 
Data Collection – Gathering raw data from various sources like databases, APIs, sensors, or 
files. 
Data Ingestion – Importing data into a storage system (like a data lake or warehouse) using 
batch or real-time pipelines. 
Data Storage – Organizing and storing data in databases, warehouses, or lakes for easy access 
and scalability. 
Data Processing – Cleaning, transforming, and structuring data to make it usable for analysis or 
machine learning. 
Data Integration – Combining data from multiple sources to create a unified, consistent 
dataset. 
Data Analysis & Modeling – Using analytical tools or ML models to extract insights and 
patterns. 
Data Visualization & Reporting – Presenting data insights through dashboards, charts, or 
reports for decision-making. 
Monitoring & Maintenance – Tracking data quality, pipeline performance, and making 
updates as systems evolve. 
Main challenges faced at each stage    [4] 
Data Collection :  Inconsistent or missing data from sources ,Data in different formats , Access 
restrictions or API limits   
Data Ingestion : Handling large data volumes in real time,Data duplication or loss during 
transfer ,Network and latency issues. 
Data Storage : Choosing the right storage system (SQL, NoSQL, data lake, etc. ,Managing 
storage costs ,Ensuring data security and backup . 
Data Processing : Data quality issues (errors, outliers, duplicates) , Complex transformation 
logic ,Processing speed and scalability 
Data Integration: Schema mismatches between sources ,Maintaining consistency across 
systems , Handling updates and changes in source data. 
Data Analysis & Modeling: Dealing with biased or incomplete data ,Selecting appropriate 
analytical models ,Ensuring reproducibility and validation 
Data Visualization & Reporting: Choosing the right visualization tools ,Misinterpretation of 
results ,Keeping dashboards up to date with new data 
 Monitoring & Maintenance: Detecting and fixing pipeline failures ,Managing concept drift 
(model degradation) ,Ensuring data governance and compliance 
 
Data Maturity Stages : Ad-hoc , Repeatable , Defined , Managed , Optimized  [2]  
 

10 CO1 L2 

2 Explain the trade-offs between Type A and Type B data engineering 
approaches. How do they align with different organizational needs and data 
maturity Stages? 
Type A data engineering approaches:  
Type A Data Engineering focuses on data for analysis, reporting, and business intelligence 
(BI). The goal is to make data clean, consistent, and easily accessible for decision-making — 
not necessarily real-time applications. 
 

10 CO1 L2 

           



    

Type B data engineering approaches: 
Type B Data Engineering focuses on building data systems that power real-time 
applications, AI/ML models, and data-driven products. The goal is to make data fast, 
scalable, and actionable for intelligent systems — not just reports. 
Trade offs between Type A and Type B data engineering: Both differ mainly in purpose and 
complexity. Type A focuses on analytics, reporting, and business intelligence using structured, 
historical data processed in batches. It is simpler, cost-effective, and best suited for 
organizations in early to mid data maturity stages. In contrast, Type B supports real-time 
applications, AI, and machine learning by handling diverse data types and using real-time or 
event-driven architectures. While it offers high scalability and enables automation, it is more 
complex, expensive, and requires advanced technical skills. In summary, Type A enables data-
driven decisions, whereas Type B powers data-driven actions — and mature organizations often 
combine both for balance. 
 Different organizational needs and data maturity Stages 
Organizations in the early stages of data maturity usually adopt Type A, focusing on building 
reliable data pipelines for reporting, dashboards, and business insights. Their priority is to 
ensure data quality, consistency, and accessibility rather than real-time analytics. As 
organizations mature, their data needs evolve toward real-time decision-making, automation, 
and AI-driven products — areas where Type B excels. Type B suits high-maturity 
organizations that have established data governance, advanced infrastructure, and skilled teams 
capable of handling large-scale, real-time, and unstructured data. In essence, Type A supports 
foundational analytics and decision-making, while Type B enables intelligent, automated, 
and real-time data applications in advanced data-driven organizations. 
 

3.  Apply the concept of “Good Data Architecture” to design a simple architecture 
for an online library system that serves 10,000 users. 

Good Data Architecture Principles 

1. Scalability: Should handle growth in users, books, and activity. 
2. Modularity: Separate components for catalog, users, borrowing, and analytics. 
3. Data Consistency & Integrity: Ensure accurate book availability, user data, and 

borrowing history. 
4. Security & Privacy: Protect user data and sensitive information. 
5. Performance: Fast search, book checkout, and recommendation queries. 
6. Maintainability: Easy to update and extend with new features. 

Proposed Simple Architecture for Online Library 

1. User Layer (Frontend): 
Web/mobile apps where users search books, borrow, return, and rate. 

2. Application Layer (Backend) 
Handles business logic: authentication, borrowing rules, search, recommendations. 

   3.Data Layer: 

             Relational Database (SQL): Store structured data like users, books, borrow/return 
logs.NoSQL Database (Optional): Store semi-structured data like book reviews or logs.Search 
Engine (Elasticsearch): Fast book searches and recommendations. 

3. ETL / Analytics Layer: 
 
        Batch or stream processing pipelines to analyze borrowing patterns, popular books, and 
system performance. 
 
 
4. Security & Governance: 
Role-based access control for admins and users. 
 
Encryption for sensitive user data. 
 
 

10 CO2 L3 



    

Data Flow Example 

1. User searches for a book → Frontend → Backend (Catalog Service) → Search Engine 
→ Results displayed. 
 

2. User borrows a book → Backend (Borrowing Service) → Relational DB updated → 
Analytics pipeline logs activity. 
 

3. Recommendations generated via analytics pipeline and returned to users. 

 
4.a Explain the concept of FinOps in cloud cost optimization. 

FinOps is a collaborative approach that brings together finance, operations, and engineering 
teams to manage and optimize cloud spending.  

How FinOps Optimizes Cloud Costs 

 Right-Sizing Resources: Adjust compute/storage instances to actual usage. 
 

 Reserved Instances & Savings Plans: Pre-purchase capacity to reduce on-demand 
costs. 
 

 Auto-Scaling: Automatically scale resources up/down based on demand. 
 

 Tagging & Cost Allocation: Attribute costs to departments/projects for transparency. 
 

 Eliminating Waste: Delete unused resources, idle VMs, or obsolete storage 

5 CO2 L2 

4.b Explain the difference between data architecture and enterprise architecture 
With examples. 
   

      DATA   ARCHITECTURE        ENTERPRISE ARCHITECTURE 

Data management: storage, pipelines, 
quality 

Organization-wide IT systems and processes 

Limited to data-related components Broad: business, applications, technology, and data 

 

Ensure accurate, accessible, and 
secure data 

 

 
 

Align IT systems and processes with business 
objectives 

 

Data warehouse for sales analytics 

 

 

 

Full IT landscape: e-commerce platform, inventory, 
cloud infrastructure, and data warehouse 

 
 
 
 

5 CO2 L2 



    

 
5.(a) Differentiate GIT and DVC , With one example , apply the commands of DVC tool and 

explain the requirement of GIT , during the data version control 
GIT 

 Version control for code and small text files. 
 Not suitable for large files (>100 MB) 
 Local or remote Git repository 
 Tracks changes in code (commits) 

 
DVC 

 Version control for large data files, datasets, and ML models 
 Efficiently tracks large files without storing them in Git 
 Links data to remote storage (S3, GCP, Azure, etc.) 
 Tracks changes in data and model files, along with pipelines 
 Teams can share  datasets and model versions alongside code 

Example 

Suppose you have a machine learning project: 

 Code files: train.py, model.py → managed with Git 
 

 Dataset: data/large_dataset.csv → managed with DVC 

DVC Commands and Example Workflow 

1. Initialize DVC in a project 

dvc init 

2. Add a dataset to DVC 

dvc add data/large_dataset.csv 

 Creates a .dvc file (large_dataset.csv.dvc) that tracks the dataset. 
 
 

3. Commit the DVC tracking file with Git 
git add data/large_dataset.csv.dvc .gitignore 

git commit -m "Track dataset with DVC" 

 Git tracks the .dvc file (metadata), not the large dataset itself. 
 
 

4. Push dataset to remote storage 

dvc remote add -d myremote s3://my-bucket/data 

dvc push 

 The dataset is stored remotely; DVC keeps track of versions. 
 
 

5. Pull dataset from remote (for collaborators)  dvc pull 

 

 CO3 L3 

5.(b) Define feature selection and dimensionality reduction. How do they help 5 CO3 L2 



    

mitigate the curse of dimensionality? 
Feature Selection 

Definition: 
 Feature selection is the process of choosing a subset of the most relevant features (variables) from the original 
dataset while ignoring irrelevant or redundant features. 

Purpose: 

 Improve model performance 
 

 Reduce over fitting 
 

 Lower computational cost 

Example: 
 In a dataset predicting house prices, you may select only size, location, and age of the house as features, ignoring 
less important ones like color of the mailbox. 

2. Dimensionality Reduction 

Definition: 
 Dimensionality reduction is the process of transforming high-dimensional data into a lower-dimensional 
space, while retaining most of the important information. 

Techniques: 

 PCA (Principal Component Analysis): Projects data onto a smaller set of uncorrelated components. 
 
 

 t-SNE, UMAP: Non-linear methods for visualization of high-dimensional data. 

Example: 
 Reducing a dataset with 100 features to 10 principal components that explain 95% of the variance. 

3. Mitigating the Curse of Dimensionality 

The curse of dimensionality refers to problems that arise when the number of features is very large: 

 Data becomes sparse, making it harder for models to find patterns. 
 

 Increased risk of overfitting. 
 

 Higher computational cost. 

How Feature Selection and Dimensionality Reduction Help: 

1. Reduce the number of features: Makes data less sparse and easier to analyze. 
 

2. Remove irrelevant/redundant information: Improves model accuracy and generalization. 
 

3. Lower computational complexity: Faster training and inference 

 
 
 

 



    

6. What are the challenges a MLOps engineer face during deployment at 
Production level. Write down how to mitigate the risk involved in Mlops. 
 
Challenges in Production-Level ML Deployment 

1. Data Drift & Concept Drift: 
Problem: Incoming data or patterns change over time, causing model performance to degrade. 

2. Scalability & Performance: 
Problem: Model may fail to handle high traffic or large volumes of data efficiently. 

3. Model Versioning & Rollback: 
               Problem: Difficult to manage multiple versions of models and revert if a new model fails. 

4. Reproducibility: 
               Problem: Inability to reproduce training experiments due to inconsistent environments or data. 

5. Monitoring & Logging: 
Problem: Lack of continuous monitoring can lead to unnoticed failures or accuracy drops. 

6. Infrastructure & Deployment Complexity: 
Problem: Integrating ML models with existing systems, handling dependencies, and containerization. 

7. Security & Compliance: 
              Problem: Sensitive data may be exposed; models may violate regulations 

8. Cost Management: 
Problem: Inefficient resource usage can increase cloud or hardware costs. 

Mitigating Risks in MLOps Deployment 

1. Continuous Monitoring: 
Track model performance, accuracy, latency, and data quality in real-time. 

2. Automated Testing & Validation: 
Test models on new data before full deployment. Include unit tests, integration tests, and regression 
tests. 

3. Version Control: 
               Use Git/DVC to track code, data, and model versions; maintain clear rollback mechanisms. 
 

4. Scalable Infrastructure: 
Use containerization (Docker, Kubernetes) and auto-scaling to handle variable load. 
 

5. Data & Model Governance: 
Implement access controls, encryption, and compliance checks for sensitive data. 
 

6. CI/CD Pipelines for ML: 
Automate the training, testing, and deployment processes to reduce human error. 
 

7. Resource Optimization: 
Monitor cloud costs, optimize inference pipelines, and right-size resources. 
 

8. Feedback Loops: 
Continuously collect new data to retrain models and adapt to changing patterns. 
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