

USN

Internal Assessment Test1–September2025

Sub: DATAENGINEERING AND MLOPS
Sub
Code:

BAD714C Branch:
AIML/CSE
AIML

Date: 29/09/25 Duration: 90min MaxMarks: 50 Sem/Sec: VII/A,B&C OBE
Answer any FIVE FULL Questions MAR

KS
CO RBT

1 Explain the stages of the Data Engineering Life Cycle, What are the main challenges
faced at each stage? Explain various data maturity stages in data engineering

10 CO1 L2

2 Explain the trade-offs between TypeA and TypeB data engineering
approaches. How do they align with different organizational needs and data maturity
Stages?

10 CO1 L2

3 Apply the concept of “Good Data Architecture” to design a simple
architecture for an online library system that serves 10,000 users.

10 CO2 L3

4a Explain the concept of FinOps in cloud cost optimization. 5 CO2 L2
4b Explainthedifferencebetweendataarchitectureandenterprisearchitecture

With examples.
5 CO2 L2

5a DifferentiateGITandDVC,Withoneexample,applythecommandsofDVCtooland
Explain the requirement of GIT, during the data version control

5 CO3 L3

5b Define feature selection and dimensionality reduction .How do they help

Mitigate the curse of dimensionality?
5 CO3 L1

6 What arethechallenges aMLOpsengineerfaceduringdeploymentat
production level.WritedownhowtomitigatetheriskinvolvedinMlops.

10 CO3 L1

Faculty Signature CCI Signature HOD Signature

USN

Internal Assessment Test 1 – November 2025

Sub: Data Engineering and MLOPS Sub
Code: BAD714C Branch: AIML/CSE

AIML
Date: 29/09/2025 Duration: 90

min’s
Max
Marks:

50 Sem/Sec: VII /A,B
CSEAIML(A)

OBE

Answer any FIVE FULL Questions MARKS CO RBT

1. Explain the stages of the Data Engineering Life Cycle, What are the main
challenges faced at each stage? Explain various data maturity stages in data
engineering.
Data Engineering Life Cycle stages [4]
Data Collection – Gathering raw data from various sources like databases, APIs, sensors, or
files.
Data Ingestion – Importing data into a storage system (like a data lake or warehouse) using
batch or real-time pipelines.
Data Storage – Organizing and storing data in databases, warehouses, or lakes for easy access
and scalability.
Data Processing – Cleaning, transforming, and structuring data to make it usable for analysis or
machine learning.
Data Integration – Combining data from multiple sources to create a unified, consistent
dataset.
Data Analysis & Modeling – Using analytical tools or ML models to extract insights and
patterns.
Data Visualization & Reporting – Presenting data insights through dashboards, charts, or
reports for decision-making.
Monitoring & Maintenance – Tracking data quality, pipeline performance, and making
updates as systems evolve.
Main challenges faced at each stage [4]
Data Collection : Inconsistent or missing data from sources ,Data in different formats , Access
restrictions or API limits
Data Ingestion : Handling large data volumes in real time,Data duplication or loss during
transfer ,Network and latency issues.
Data Storage : Choosing the right storage system (SQL, NoSQL, data lake, etc. ,Managing
storage costs ,Ensuring data security and backup .
Data Processing : Data quality issues (errors, outliers, duplicates) , Complex transformation
logic ,Processing speed and scalability
Data Integration: Schema mismatches between sources ,Maintaining consistency across
systems , Handling updates and changes in source data.
Data Analysis & Modeling: Dealing with biased or incomplete data ,Selecting appropriate
analytical models ,Ensuring reproducibility and validation
Data Visualization & Reporting: Choosing the right visualization tools ,Misinterpretation of
results ,Keeping dashboards up to date with new data
 Monitoring & Maintenance: Detecting and fixing pipeline failures ,Managing concept drift
(model degradation) ,Ensuring data governance and compliance

Data Maturity Stages : Ad-hoc , Repeatable , Defined , Managed , Optimized [2]

10 CO1 L2

2 Explain the trade-offs between Type A and Type B data engineering
approaches. How do they align with different organizational needs and data
maturity Stages?
Type A data engineering approaches:
Type A Data Engineering focuses on data for analysis, reporting, and business intelligence
(BI). The goal is to make data clean, consistent, and easily accessible for decision-making —
not necessarily real-time applications.

10 CO1 L2

Type B data engineering approaches:
Type B Data Engineering focuses on building data systems that power real-time
applications, AI/ML models, and data-driven products. The goal is to make data fast,
scalable, and actionable for intelligent systems — not just reports.
Trade offs between Type A and Type B data engineering: Both differ mainly in purpose and
complexity. Type A focuses on analytics, reporting, and business intelligence using structured,
historical data processed in batches. It is simpler, cost-effective, and best suited for
organizations in early to mid data maturity stages. In contrast, Type B supports real-time
applications, AI, and machine learning by handling diverse data types and using real-time or
event-driven architectures. While it offers high scalability and enables automation, it is more
complex, expensive, and requires advanced technical skills. In summary, Type A enables data-
driven decisions, whereas Type B powers data-driven actions — and mature organizations often
combine both for balance.
 Different organizational needs and data maturity Stages
Organizations in the early stages of data maturity usually adopt Type A, focusing on building
reliable data pipelines for reporting, dashboards, and business insights. Their priority is to
ensure data quality, consistency, and accessibility rather than real-time analytics. As
organizations mature, their data needs evolve toward real-time decision-making, automation,
and AI-driven products — areas where Type B excels. Type B suits high-maturity
organizations that have established data governance, advanced infrastructure, and skilled teams
capable of handling large-scale, real-time, and unstructured data. In essence, Type A supports
foundational analytics and decision-making, while Type B enables intelligent, automated,
and real-time data applications in advanced data-driven organizations.

3. Apply the concept of “Good Data Architecture” to design a simple architecture
for an online library system that serves 10,000 users.

Good Data Architecture Principles

1. Scalability: Should handle growth in users, books, and activity.
2. Modularity: Separate components for catalog, users, borrowing, and analytics.
3. Data Consistency & Integrity: Ensure accurate book availability, user data, and

borrowing history.
4. Security & Privacy: Protect user data and sensitive information.
5. Performance: Fast search, book checkout, and recommendation queries.
6. Maintainability: Easy to update and extend with new features.

Proposed Simple Architecture for Online Library

1. User Layer (Frontend):
Web/mobile apps where users search books, borrow, return, and rate.

2. Application Layer (Backend)
Handles business logic: authentication, borrowing rules, search, recommendations.

 3.Data Layer:

 Relational Database (SQL): Store structured data like users, books, borrow/return
logs.NoSQL Database (Optional): Store semi-structured data like book reviews or logs.Search
Engine (Elasticsearch): Fast book searches and recommendations.

3. ETL / Analytics Layer:

 Batch or stream processing pipelines to analyze borrowing patterns, popular books, and
system performance.

4. Security & Governance:
Role-based access control for admins and users.

Encryption for sensitive user data.

10 CO2 L3

Data Flow Example

1. User searches for a book → Frontend → Backend (Catalog Service) → Search Engine
→ Results displayed.

2. User borrows a book → Backend (Borrowing Service) → Relational DB updated →
Analytics pipeline logs activity.

3. Recommendations generated via analytics pipeline and returned to users.

4.a Explain the concept of FinOps in cloud cost optimization.

FinOps is a collaborative approach that brings together finance, operations, and engineering
teams to manage and optimize cloud spending.

How FinOps Optimizes Cloud Costs

 Right-Sizing Resources: Adjust compute/storage instances to actual usage.

 Reserved Instances & Savings Plans: Pre-purchase capacity to reduce on-demand
costs.

 Auto-Scaling: Automatically scale resources up/down based on demand.

 Tagging & Cost Allocation: Attribute costs to departments/projects for transparency.

 Eliminating Waste: Delete unused resources, idle VMs, or obsolete storage

5 CO2 L2

4.b Explain the difference between data architecture and enterprise architecture
With examples.

 DATA ARCHITECTURE ENTERPRISE ARCHITECTURE

Data management: storage, pipelines,
quality

Organization-wide IT systems and processes

Limited to data-related components Broad: business, applications, technology, and data

Ensure accurate, accessible, and
secure data

Align IT systems and processes with business
objectives

Data warehouse for sales analytics

Full IT landscape: e-commerce platform, inventory,
cloud infrastructure, and data warehouse

5 CO2 L2

5.(a) Differentiate GIT and DVC , With one example , apply the commands of DVC tool and

explain the requirement of GIT , during the data version control
GIT

 Version control for code and small text files.
 Not suitable for large files (>100 MB)
 Local or remote Git repository
 Tracks changes in code (commits)

DVC

 Version control for large data files, datasets, and ML models
 Efficiently tracks large files without storing them in Git
 Links data to remote storage (S3, GCP, Azure, etc.)
 Tracks changes in data and model files, along with pipelines
 Teams can share datasets and model versions alongside code

Example

Suppose you have a machine learning project:

 Code files: train.py, model.py → managed with Git

 Dataset: data/large_dataset.csv → managed with DVC

DVC Commands and Example Workflow

1. Initialize DVC in a project

dvc init

2. Add a dataset to DVC

dvc add data/large_dataset.csv

 Creates a .dvc file (large_dataset.csv.dvc) that tracks the dataset.

3. Commit the DVC tracking file with Git
git add data/large_dataset.csv.dvc .gitignore

git commit -m "Track dataset with DVC"

 Git tracks the .dvc file (metadata), not the large dataset itself.

4. Push dataset to remote storage

dvc remote add -d myremote s3://my-bucket/data

dvc push

 The dataset is stored remotely; DVC keeps track of versions.

5. Pull dataset from remote (for collaborators) dvc pull

 CO3 L3

5.(b) Define feature selection and dimensionality reduction. How do they help 5 CO3 L2

mitigate the curse of dimensionality?
Feature Selection

Definition:
 Feature selection is the process of choosing a subset of the most relevant features (variables) from the original
dataset while ignoring irrelevant or redundant features.

Purpose:

 Improve model performance

 Reduce over fitting

 Lower computational cost

Example:
 In a dataset predicting house prices, you may select only size, location, and age of the house as features, ignoring
less important ones like color of the mailbox.

2. Dimensionality Reduction

Definition:
 Dimensionality reduction is the process of transforming high-dimensional data into a lower-dimensional
space, while retaining most of the important information.

Techniques:

 PCA (Principal Component Analysis): Projects data onto a smaller set of uncorrelated components.

 t-SNE, UMAP: Non-linear methods for visualization of high-dimensional data.

Example:
 Reducing a dataset with 100 features to 10 principal components that explain 95% of the variance.

3. Mitigating the Curse of Dimensionality

The curse of dimensionality refers to problems that arise when the number of features is very large:

 Data becomes sparse, making it harder for models to find patterns.

 Increased risk of overfitting.

 Higher computational cost.

How Feature Selection and Dimensionality Reduction Help:

1. Reduce the number of features: Makes data less sparse and easier to analyze.

2. Remove irrelevant/redundant information: Improves model accuracy and generalization.

3. Lower computational complexity: Faster training and inference

6. What are the challenges a MLOps engineer face during deployment at
Production level. Write down how to mitigate the risk involved in Mlops.

Challenges in Production-Level ML Deployment

1. Data Drift & Concept Drift:
Problem: Incoming data or patterns change over time, causing model performance to degrade.

2. Scalability & Performance:
Problem: Model may fail to handle high traffic or large volumes of data efficiently.

3. Model Versioning & Rollback:
 Problem: Difficult to manage multiple versions of models and revert if a new model fails.

4. Reproducibility:
 Problem: Inability to reproduce training experiments due to inconsistent environments or data.

5. Monitoring & Logging:
Problem: Lack of continuous monitoring can lead to unnoticed failures or accuracy drops.

6. Infrastructure & Deployment Complexity:
Problem: Integrating ML models with existing systems, handling dependencies, and containerization.

7. Security & Compliance:
 Problem: Sensitive data may be exposed; models may violate regulations

8. Cost Management:
Problem: Inefficient resource usage can increase cloud or hardware costs.

Mitigating Risks in MLOps Deployment

1. Continuous Monitoring:
Track model performance, accuracy, latency, and data quality in real-time.

2. Automated Testing & Validation:
Test models on new data before full deployment. Include unit tests, integration tests, and regression
tests.

3. Version Control:
 Use Git/DVC to track code, data, and model versions; maintain clear rollback mechanisms.

4. Scalable Infrastructure:
Use containerization (Docker, Kubernetes) and auto-scaling to handle variable load.

5. Data & Model Governance:
Implement access controls, encryption, and compliance checks for sensitive data.

6. CI/CD Pipelines for ML:
Automate the training, testing, and deployment processes to reduce human error.

7. Resource Optimization:
Monitor cloud costs, optimize inference pipelines, and right-size resources.

8. Feedback Loops:
Continuously collect new data to retrain models and adapt to changing patterns.

10 CO3 L1

