

 USN

Internal Assessment Test 1 – November 2025

Sub: Digital Design and Computer Organization Sub Code: BCS302 Branch: AIML

Date: 04/11/24 Duration:
90

minutes
Max Marks: 50 Sem/Sec: III OBE

Answer any FIVE FULL Questions MARKS CO RBT

1 a

Find all the prime implicants for the following Boolean functions, and determine
which are essential. Also simplify the functions:
F (w, x, y, z) = (0, 2, 3, 5, 7, 8, 9, 10, 11, 13, 15)

Evaluation Distribution:- 2 marks for K-map, 4 marks for Grouping, 2 marks for
prime implicants, 2 marks for essential prime implicants.
Note :- *Based on grouping user is following, group values can change.

1 1 1

 1 1

 1 1

1 1 1 1

Prime implicants:- Prime implicants are the largest possible groups of 1's in the
Karnaugh map that can be combined.
Group 01:- (8,9,10,11)->AB’
Group 02:- (5,7,13,15) ->BD
Group 03:-(0,2,8,10)-> B’D’
Group 04:- (2,3,10,11)->B’C
Group 05:- (9,11,13,15)-> AD
Group 06:- (3,7,11,15)->CD
Essential Prime implicants:-

1 1 1

 1 1

 1 1

1 1 1 1

Group 01: -(0,2,8,10)-B’D’
Group 02: -(5,7,13,15)->BD
Group 03:- (9,11,13,15)-> AD
Group 04:- (3,7,11,15)->CD

[10] 1 L3

2 a

Give SOP and POS circuit for F(A,B,C,D) = ∑m (6,8,9,10,11,12,13,14,15)
Evaluation distribution:- 2 Marks for K-map, 2 marks for SOP equation, 2 marks
for POS equation, 2 marks for SOP circuit, 2 marks For POS circuit.
Note :- *Based on grouping user is following, group values can change.

[10] 2 L3

To find the Sum of Products (SOP) and Product of Sums (POS) expressions for the
Boolean function 𝐹(𝐴, 𝐵, 𝐶, 𝐷) = ∑𝑚(6,8,9,10,11,12,13,14,15), let's break down the
problem step by step.
Step 1: Set up the K-map
We'll plot these minterms on a 4-variable Karnaugh Map (K-map). The variables are
𝐴, 𝐵, 𝐶, 𝐷.
Here’s the K-map layout:

 1

1 1 1 1
1 1 1 1

Step 2: Identify the Groups
Group 01:- (8,9,10,11,12,13,14,15)-A
Group 02 :- (6,14)-BCD’ [A’BCD’ If you are keeping 6th
individually]
Step 3: Sum of Products (SOP)
From the prime implicants identified in the K-map, we can now write the Sum of
Products (SOP) expression by OR’ing the prime implicants together.
The SOP expression is:

𝐹(𝐴, 𝐵, 𝐶, 𝐷) = 𝐴 + 𝐵𝐶𝐷′

Step 4: Product of Sums (POS)
To find the Product of Sums (POS) expression, we need to write the K-map as groups
of 0’s instead of 1's. First, we identify the 0’s in the K-map:

𝐴𝐵\𝐶𝐷 00 01 11 10
00 1 1 1 1
01 1 1 1 0
11 0 0 0 0
10 0 0 0 0

Now we need to group the 0’s in the K-map:

 Group 1: (0,1,4,5)->A+C

 Group 2: (1,5,7,9)A+D’

 Group 3: (0,1,2,3)A+B

Step 5: Final POS Expression
To find the POS expression, we combine the groups we just identified. The POS
expression is:

𝐹(𝐴, 𝐵, 𝐶, 𝐷) = (𝐴 + 𝐶)(𝐴 + 𝐷′)(𝐴 + 𝐵)

3 a

3A digital system is to be designed in which the months of the year is given as
input in four-
bit form. The month January is represented as ‘0000’ and so on. The outputs of
the system
should be ‘1’ if the month contains 30 days, else 0. Consider the excess number in
the input
beyond ‘1011’ as don’t care conditions. Find the following: -
1. Give the truth table and simplify by using the K-map.
2. Boolean expression in ∑m and ∏M form
3. Implement the simplified equation using NAND-NAND gates.
Evaluation Distribution:- 4 (2+2) marks for k-map and simplification, 2(1+1) marks
for SOP and POS form, 4 for NAND-NAND gates.
3.(1)
Truth Table
Month No of days A B C D X

[10] 2 L3

January 31 0 0 0 0 0
February 28/29 0 0 0 1 0
March 31 0 0 1 0 0
April 30 0 0 1 1 1
May 31 0 1 0 0 0
June 30 0 1 0 1 1
July 31 0 1 1 0 0
August 31 0 1 1 1 0
September 30 1 0 0 0 1
October 31 1 0 0 1 0
November 30 1 0 1 0 1
December 31 1 0 1 1 0
 1 1 0 0 X
 1 1 0 1 X
 1 1 1 0 X
 1 1 1 1 X

Note :- *Based on grouping user is following, group values can change.
K-map

 1
 1

X X X X
1 1

Group 01:- (8,10,12,14)-> AD’
Group 02:- (5,13)->BC’D
Group 03:- 3 -> A’B’CD
F(A,B,C,D) = AB’D’+BC’D+A’B’CD
3. (2)
F(A,B,C,D) = ∑m(3,5,8,10) + d(12,13,14,15) and ∏M
F(A,B,C,D) = ∏M (0,1,2,4,6,7,9,11) + d(12,13,14,15)

4 a

Write short notes on the BCD Adder.
Evaluation Distribution: -At least 5 components (such as Definition, working
principal, logical diagram, advantages, disadvantages, applications etc.), 2 marks for
each component.
A BCD Adder (Binary Coded Decimal Adder) is a digital circuit used to add two
decimal numbers that are represented in Binary Coded Decimal (BCD) format.
In BCD representation, each decimal digit (0–9) is represented by its 4-bit binary
equivalent.
Need for a BCD Adder:

 Ordinary binary addition does not always give a valid BCD result.

 A valid BCD digit must be in the range 0000 (0) to 1001 (9).

 When the binary sum exceeds 1001 (i.e., decimal 9), it becomes an invalid
BCD number, and a correction must be applied.

Working Principle:
1. Step 1: Add the two BCD digits (including any carry from a previous stage)

using a 4-bit binary adder.

2. Step 2: Check for correction condition.

o If the 4-bit sum ≤ 1001 (9), it is a valid BCD result.

[10] 1 L2

o If the sum > 1001 (i.e., 1010–1111) or a carry out from the 4-bit adder
occurs, then add 6 (0110) to the sum to correct it.

3. Step 3: Generate carry to the next decimal digit if a correction was made.

Logic:- C' + S3'.S2' + S3'.S1' = 1

Block Diagram:

Advantages:

 Provides accurate decimal arithmetic in digital systems.

 Ensures compatibility between binary processing and decimal display.

 Decimal Precision: BCD adders guarantee that when adding decimal numbers,
they do not make mistakes since the process is conducted on digits that
are Binary Coded Decimal direct (0-9).

 Simplified Decimal Arithmetic: When it comes to decimal arithmetic
operations, BCD adders offer computerized systems with an easier way out
making them fit for fields.

 Common Display Compatibility: The common display technologies such as
7-segment displays are directly compatible with BCD numbers

 Mistake Recognition: Just a simple addition is all that is required by such
devices so as to find out the parity of invalid BCDs (for instance those larger
than digit 9), making it easier for FEC systems. In this manner it forms part of
an error detection system and correction scheme that ensure precision results.

 High-Efficiency Circuit Design: BCD adders facilitate the creation of
efficient, optimized circuits specifically designed for decimal arithmetic, which
results in speedier processing times and less complicated digital circuits.

These benefits show how critical BCD adders are in processing decimal arithmetic
using digital logic well and correctly.
Disadvantages of BCD Adder

 Memory Misallocation: In comparison to binary digits, the BCD figures take
up more memory to portray comparable values, hence generating greater
memory use within BCD operational systems.

 Restricted Set of Values: BCD adders are constrained to only decimal digits
(0-9) hence cannot carry out direct arithmetic on values that are beyond this
range without extra conversion circuitry thus restricting their versatility in
some applications.

 Lower Speed of Arithmetic Operations: Since they require BCD correction
and manage decimal numbers, BCD adders may have lower operational speeds
than binary ones affecting the overall performance of digital systems.

 Compatibility concerns: BCD arithmetic could be at odds with some
techniques or algorithms especially those that are improved to perform better in
binary arithmetic; hence you get such compatibility problems when using both
types of arithmetic within a system.

 High Circuit Complexity: BCD adders are more complicated than binary
adders owing to BCD correction logic requirements that make sure valid BCD
outputs are produced. This increased complexity can also lead to bigger circuit
sizes as well as more difficult designs.

5 a

Design a Verilog code to implement 2:1 and 4:1 multiplexer
Evaluation Distribution: - 5(2*2.5) marks,2.5 marks for each multiplexer, in each
multiplexer 0.5 marks for equations, 2 marks for code for each multiplexer.
Verilog Code for 2:1 multiplexer
The logic equation:

𝑌 = 𝑆? 𝐼1: 𝐼0
or equivalently,

𝑌 = (𝑆‾ ⋅ 𝐼0) + (𝑆 ⋅ 𝐼1)
Module code
module mux2to1_gate (
 input I0, I1, S,
 output Y
);
 wire Sbar, a1, a2;

 not (Sbar, S);
 and (a1, I0, Sbar);
 and (a2, I1, S);
 or (Y, a1, a2);
endmodule

TESTBENCH
module tb_mux2to1;
 reg I0, I1, S;
 wire Y;

 mux2to1 uut (.I0(I0), .I1(I1), .S(S), .Y(Y));
 initial begin
 $display("S I1 I0 | Y");
 $monitor("%b %b %b | %b", S, I1, I0, Y);
 I0=0; I1=0; S=0; #10;
 I0=0; I1=1; S=0; #10;
 I0=1; I1=0; S=1; #10;
 I0=1; I1=1; S=1; #10;
 $stop;
 end

[05] 3 L3

endmodule

Verilog Code for 4:1 multiplexer
The logic equation:

𝑌 = (𝑆1‾ 𝑆0‾ 𝐼0) + (𝑆1‾ 𝑆0𝐼1) + (𝑆1𝑆0‾ 𝐼2) + (𝑆1𝑆0𝐼3)
Module file
module mux4to1_gate (
 input I0, I1, I2, I3,
 input S1, S0,
 output Y
);
 wire S1bar, S0bar;
 wire and0, and1, and2, and3;

 not (S1bar, S1);
 not (S0bar, S0);

 and (and0, I0, S1bar, S0bar);
 and (and1, I1, S1bar, S0);
 and (and2, I2, S1, S0bar);
 and (and3, I3, S1, S0);

 or (Y, and0, and1, and2, and3);
endmodule

TESTBENCH
module tb_mux4to1;
 reg [3:0] I;
 reg [1:0] S;
 wire Y;

 mux4to1 uut (.I(I), .S(S), .Y(Y));
 initial begin
 $display("S1 S0 | I3 I2 I1 I0 | Y");
 $monitor("%b %b | %b %b %b %b | %b",
 S[1], S[0], I[3], I[2], I[1], I[0], Y);

 I = 4'b1010;
 S = 2'b00; #10;
 S = 2'b01; #10;
 S = 2'b10; #10;
 S = 2'b11; #10;

 $stop;
 end
endmodule

 b

Write the difference between combinational circuits and sequential circuits.
Evaluation Distribution: - At least 5 key differences. 1 marks for each.

Aspect Combinational Circuit Sequential Circuit

Definition

Output depends only on the
current inputs.

Output depends on both
current inputs and past
states (memory).

[05] 3 L2

Memory
Elements

Does not require memory
elements.

Requires memory elements
like flip-flops or latches.

Timing
Dependency

Output is immediate, based
on input changes.

Output is dependent on
clock pulses and previous
states.

Clock Signal
No clock signal required.

Requires a clock signal to
synchronize state changes.

Design
Complexity

Simpler design without the
need for memory.

More complex due to
memory and clock
management.

Speed

Faster, as outputs change
instantly with inputs.

Slower due to dependency
on clock cycles and past
states.

Functionality

Performs basic logical
operations without sequence
dependency.

Performs operations that
require sequences or timed
events.

Examples

Adders, Subtractors, Multipl
exers, Encoders.

Counters, Shift
Register, Flip-Flops, State
Machines.

Power
Consumption

Generally lower power
consumption.

Higher power consumption
due to memory and clock
circuitry.

Application

Used in tasks requiring
direct logical operations
(e.g., arithmetic).

Used in applications
involving sequential
operations (e.g., counters,
registers).

6 a

Explain the following: (i) Adder (ii) Subtractor
Evaluation Distribution: -5 marks for each. Each evaluation on 5 components
(definition, types, equations, diagram, applications etc.) 1 mark for each component.
(i) ADDER: -An Adder is a combinational logic circuit that performs the arithmetic
operation of addition of binary numbers. Adders are fundamental components used in
digital systems, such as microprocessors, ALUs (Arithmetic Logic Units), and digital
calculators.
Types of Adders:
1. Half Adder

 A Half Adder adds two 1-bit binary numbers (A and B).
 It produces two outputs:

o SUM (S) → represents the least significant bit of the result.
o CARRY (C) → represents the carry-out bit.

[10] 3 L2

Logic Diagram:
 Sum = A ⊕ B (XOR gate)
 Carry = A · B (AND gate)

A B
SU
M

CAR
RY

0 0 0 0

0 1 1 0

1 0 1 0

1 1 0 1
2. Full Adder

 A Full Adder adds three bits: two input bits (A, B) and an input carry (Cin).
 It produces:

o SUM (S)
o CARRY (Cout)

Logic Diagram:
 Sum = A ⊕ B ⊕ Cin
 Carry = (A · B) + (Cin · (A ⊕ B))

A B Cin SUM
CARR
Y

0 0 0 0 0

0 0 1 1 0

0 1 0 1 0

0 1 1 0 1

1 0 0 1 0

1 0 1 0 1

1 1 0 0 1

1 1 1 1 1
Applications:

 Used in arithmetic and logic units (ALU)

 Binary addition circuits

 Digital counters and processors

(ii) SUBTRACTOR: - A Subtractor is a combinational circuit that performs
binary subtraction.
It subtracts one binary number from another and provides two outputs:

 DIFFERENCE (D)

 BORROW (B)

Types of Subtractors:
1. Half Subtractor

 Subtracts two binary digits: A (minuend) and B (subtrahend).
 Outputs:

o Difference (D) = D=A⊕B
o Borrow (B) = A’B

A B
DIFFEREN
CE

BORRO
W

0 0 0 0

0 1 1 1

1 0 1 0

1 1 0 0
Logic Diagram:

 One XOR gate and one AND-NOT (inverter + AND) gate.

2. Full Subtractor
 Subtracts three bits: A (minuend), B (subtrahend), and Bin (borrow-in).
 Outputs:

o Difference (D)
o Borrow-out (Bout)

Logic Equations:
 Difference = A ⊕ B ⊕ Bin
 Borrow = (¬A · B) + (Bin · ¬(A ⊕ B))

A B Bin
DIFFE
RENCE

BORRO
W

0 0 0 0 0

0 0 1 1 1

0 1 0 1 1

0 1 1 0 1

1 0 0 1 0

1 0 1 0 0

1 1 0 0 0

1 1 1 1 1
Applications:

 Used in arithmetic logic units (ALU) for subtraction.
 Digital calculators and microprocessors.
 Binary arithmetic and control circuits.

CI CCI HoD

