Internal Assessment Test Answer Key 1 — Nov. 2025
Operating Systems(BCS303)

Questions Ma
rks
a) Write the difference between symmetric and asymmetric multiprocessing. |4
Symmetric Multiprocessing (SMP) Asymmetric Multiprocessing (AMP)
All processors are treated equally and share One processor (master) controls the system;
the same memory and I/O. others (slaves) perform assigned tasks.
Each processor can perform any task, Only the master processor handles OS5
including O5 functions. functions; slave processors handle user
programes.
Load is evenly distributed among all Load distribution is fixed or controlled by the
Processors, master processor,
More reliable — failure of one CPU doesn't Less reliable — failure of the master CPU can
stop the system. halt the system.
More complex to design and manage due Simpler to design since one CPU manages
to shared memory and synchronization. control.
b) Explain the services of the operating system that are helpful for the user 4

and the system

! ‘l Ay | l sl file p——— rescurse :l

EEETe Tl | oparations systems | B allocation

hasdware

Figure 2.1 A view of operating system services. 2 marks

1. User-Oriented Services

These services make the system convenient and easy for users to use:

Service

User Interface
((8)))

Program
Execution

1/0 Operations

File System
Manipulation

Communication

Error Detection

Description

The OS provides different types of interfaces —
Command-Line Interface (CLI), Graphical User Interface
(GUI), or Touch Interface — to interact with the system
easily.

The OS loads a program into memory and executes it. It
handles the program’s execution, including halting when
finished or due to errors.

OS manages input and output operations, providing a
uniform interface for I/O devices (keyboard, printer, disk,
etc.).

OS allows programs and users to read, write, create, delete,
and organize files on storage devices.

OS allows processes to exchange information, either within
the same system (interprocess communication) or over a
network (client-server communication).

OS constantly monitors for possible errors in CPU,
memory, I/O devices, or programs, and takes corrective
actions.

2. System-Oriented Services

These ensure efficient and secure system operation:

Service

Resource
Allocation

Accounting

Protection
and Security

Description

The OS allocates system resources (CPU time, memory, /O
devices) among multiple users or processes efficiently.

The OS keeps track of resource usage for each user or
process, which helps in billing or performance analysis.

The OS ensures that all system resources are accessed only by
authorized users and processes, protecting against

unauthorized access and failures.

2 marks

¢) Define Operating System with an example.

An Operating System (OS) is a program that acts as an intermediary between the
user and the computer hardware.

Its main purpose is to make the computer system convenient to use and to use the
hardware efficiently.

Windows (Microsoft)

Linux (open-source)
macOS (Apple)

Android (mobile devices

a) Compare batch, time-sharing, and distributed operating systems in terms
of control, user interaction, and resource sharing.

Comparison of Batch, Time-Sharing, and Distributed Operating Systems

Feature Batch Operating Time-Sharing Distributed Operating
System Operating System System
Control Centralized Centralized control Decentralized control
control — the — CPU time is — multiple systems
operating system shared among coordinate and share
controls job multiple users; each control through
sequencing and gets a small time communication
execution in slice. networks.
batches.
User No direct Direct interaction Users interact with the
Interactio interaction with with users through system as if it were a

n

users during
execution. Jobs
are submitted and
output is received
later.

terminals; users can
input commands and
get immediate
responses.

single unified system,
even though resources
are on different
machines.

Resource Limited; Shared among Resources (CPU,

Sharing resources are multiple users memory, files, printers,
allocated to one simultaneously using etc.) are shared among
job at a time. scheduling. interconnected

computers through the
network.

Objective Maximize system Provide quick Improve performance,
utilization and response time and reliability, and
throughput. support multiple resource availability

users interactively. through cooperation

between systems.

Example Early mainframe UNIX, Windows Amoeba, LOCUS, or
systems like IBM multi-user systems. modern networked
1401. Linux clusters.

b) Explain the layered approach of operating system structure with a
supporting diagram.

The layered approach is a method of designing an operating system where the
system is divided into a number of layers (levels), each built on top of lower
layers.

(the users)

shells and commands
compilers and interpreters
system libraries

system-call interface to the kermel

= signals terminal file system CPU scheduling

= handling swapping block 11O page replacement

L character /O system system demand paging
terminal drivers disk and lape drivers virtual memaory

kernel interface to the hardware
terminal controllers device controllers | memory controllers
terminals disks and tapes | physical memaory

Figure 2.13 Traditional UMIX system structure.

layer M
usar interface
layer 1

=

layer
hardware ;|

Figure 2.14 A layered operating system,

2 marks

The layered approach divides the operating system into a number of levels
(layers), where each layer is built upon the one below it.

e The bottom layer (Layer 0) is the hardware, and the top layer is the user
interface.

e FEach layer uses the functions and services of lower layers and provides
services to the higher layers.
The main advantage of this approach is simplicity of design, construction, and
debugging.
e Each layer can be tested and verified independently.
e Ifan error occurs in one layer, only that layer needs to be checked since

lower layers are already debugged.

This structure supports modularity, information hiding, and ease of maintenance,
making the operating system easier to develop and verify. 2 marks

a) Explain the transition between user mode and kernel mode with the help
of a diagram.

USEer procass
USEr moce

I

| Tmer ormcess sencati L J catts aatorn cob [retuen from eveter can | | (mede bit

| | user process executing —s! calls system call | | reduen from system call | |

L — \ /

T Fi
————_—_— -’

[karnel trap return

| arne mode bit =0 mode bit

i [y / kernal made
O el i — (1)
L-::'*ECI-IF! systemn call | {mode bit = 0)

Figure 1.10 Transition from user to kernel mode.
2 marks

Modern operating systems use dual mode of operation to protect the system and
distinguish between user programs and operating system code.

There are two modes:

1. User Mode — for executing user applications.

2. Kernel Mode — for executing operating system (privileged) instructions.

Explanation

e The CPU uses a mode bit (0 or 1) to indicate the current mode:
o 0 — Kernel Mode
o 1 — User Mode

e When a user program needs to perform an operation that requires OS
privileges (like I/O or memory access), it makes a system call.

e The system call causes a mode switch from user mode — kernel mode.

e After completing the requested service, control returns to the user program
and the mode switches back to user mode.

2 marks

b) Define a process and explain different states of a process with a neat state
transition diagram.

A process is a program in execution.
It is an active entity with its own program counter, stack, data section, and set of
resources. 1 mark

~ T -

, . ra . T,
(rew) admitted interrupt k—k terminated)
\"_ ’ -‘/ \-;__ e
— ~ e — "'ﬂ\.
ready J _ running J

; scheduler dispatch i
/O or event completion e --._F_J_“ 110 or event wail

!.\ waiting

S ——

Figure 3.2 Diagram of process state.

2 marks

New — Ready: Process is admitted to the ready queue after creation.

Ready — Running: The CPU scheduler selects the process for execution.
Running — Waiting: The process waits for I/O or an event to complete.
Waiting — Ready: The event occurs; process becomes ready to execute again.

Running — Terminated: Process finishes execution and is removed from
memory.

Running — Ready: Process is preempted by the scheduler (time slice expired).

2 marks

a) Illustrate how Process Control Block (PCB) is used during context
switching

Process Control Block (PCB) is a data structure maintained by the operating
system for every process.
It contains all the information required to manage and resume a process.

‘igure 3.3 Process control block (PCE).

process state |

|
| process number
i program counter |

registers

| memory limits

list of open files

1 mark

Context Switching is the process of storing the state of a running process so
that it can be resumed later, and loading the state of another process to
continue its execution.

It occurs when:

e A process is preempted by the scheduler.

e A process waits for I/O.

e An interrupt or system call occurs.

Role of PCB During Context Switch

Save Current Process State:

o The CPU’s registers, program counter, and other information of the

running process are saved into its PCB.

2. Update Process State:

o The OS changes the process state from Running — Ready or
Running — Waiting, depending on the reason for the switch.

3. Select New Process:

o The scheduler selects a new process from the ready queue.

4. Load the New Process State:

o The CPU registers and program counter are loaded from the new
process’s PCB.

5. Resume Execution:

o The new process continues from the exact point it was previously
stopped. 2 marks

process P, operating system process P,

interrupt or system call
execuling H

I | save state into PCB, |

o —

ridle

o —

|relcad state from F’CB._'

ridle interrupt or system call i| exacuting

—

| save state into PCB, |

I
‘ . »idle

) ‘reload state from F‘CE._.!
executing _r¥
T_-I,-'

Figure 3.4 Diagram showing CPU switch from process to process.

2 marks

b) Differentiate between long-term, short-term, and medium-term schedulers
with examples.

Schedulers are special system programs that decide which processes are to be
admitted, executed, or swapped.
They help manage CPU utilization and process flow efficiently.

Feature Long-Term Short-Term Scheduler Medium-Term
Scheduler (Job (CPU Scheduler) Scheduler
Scheduler) (Swapper)

Function

Frequenc
y of
Execution

Speed

Goal

Process
State
Transition

Example

Determines which
processes are
admitted into the
system for
processing.

Executes rarely
(when a new process
is created).

Slow — decisions
made infrequently.

Controls the degree
of multiprogramming
(number of processes
in memory).

Moves process from
New — Ready state.

Decides which batch
job to load from disk.

Determines which
ready process will be
executed next by the
CPU.

Executes very
frequently
(milliseconds).

Fastest — must make
quick decisions for
CPU allocation.

Provides CPU
scheduling among
ready processes.

Moves process from

Ready — Running —

Waiting/Terminated.

Chooses between
processes in ready
queue for CPU.

Temporarily
removes
(suspends)
processes from
main memory and
later reintroduces
them.

Executes
occasionally
(based on memory
load).

Moderate —
depends on system
load and swapping
needs.

Improves process
mix and reduces
memory load.

Moves process
from
Ready/Waiting —
Suspended and
back.

Swaps out
background
processes to free
memory (used in
UNIX).

swap in partially executed | swap out

swapped-out processeas

i] | N——— |
» ready gueue ~-’/r:";Pu i w 2

' — AN e

A | /O waiting
\“-»hf-"'/ queueas |

Figure 3.8 Addition of medium-term scheduling to the queueing diagram.

a) Explain interprocess communication (IPC) using shared memory and
message passing.

—_— | .
‘ pl‘ﬂl:ﬁﬁﬁ A 1 [l —— 1 process A
. IR
I’_ | I~ ghared [
: il2
' process B M [y | process B ,,_l
{ |
| |
| L2l 1[4 : '
I L | |
i |
‘ I " | . kel
warns -@tﬂ# rme
(a) (b}

Figure 3.13 Communications models. (a) Message passing. (b} Shared memory.

2 marks

Interprocess Communication (IPC) allows processes to exchange data and
information with each other.

Types of IPC Mechanisms
There are two main models of interprocess communication:
1. Shared Memory

2. Message Passing

Shared Memory System

Concept:
e A region of memory is shared by cooperating processes.

e FEach process can read and write to this memory area.

e [t is the fastest form of [PC because data is exchanged directly through
memory.

How it Works:
1. Two processes establish a shared memory region using system calls.

2. Once created, the OS no longer needs to be involved.

3. Processes use synchronization (like semaphores) to avoid data
inconsistency.
Concept:
® Processes communicate by sending and receiving messages through the
OS.

e No shared memory is used; the kernel handles message transfer.

How it Works:
1. Processes use system calls like send(message) and
receive(message).

2. Messages can be direct (process-to-process) or indirect (through
mailboxes).

3. It is slower than shared memory but safer and easier to implement in
distributed systems.
3 Marks

b) Explain the concept of multithreading. Differentiate between user-level
and kernel-level threads with one diagram illustrating their interaction with
the operating system.

Multithreading is the ability of an operating system to execute multiple threads
within a single process simultaneously.

= | . —
code || dala | | files | code data | files
U i F— | = . L
— ; p— — : ___.__'_‘__ ———
registers | | stack || registers ||| registers .!| registers |
| L | I I | | E—
| stack stack |I stack
S | | — | N—
|
i > > .
thread —— . *— thread
- : . - :_.--" |
.) b - I
| | |
I I N
single-threaded process multithreaded process

Figure 4.1 Single-threaded and multithreaded processes.

2 p
<

! — e

; {
A A Y N
'-— user thread g < '\‘ ':
4 / ¢ ¢
{ { (
1
|
\ |
AV atalal
k| (k[k] |k |+=kemnelthead | ~
N A (k) (k) (%) ~—nemeltead
J N
(k) <= kemel thread i X ; Fioure 4.7 Manv-to-manv model
\2 Figure 4.6 One-to-ong model,

Figure 4.5 Many-to-one model

2 marks

Many-to-One Model (M:1)

Description:
e Many user-level threads are mapped to a single kernel thread.

e Thread management is done by the user-level thread library, so the kernel
is unaware of the existence of multiple threads.

Advantages:
e Thread creation and switching are very fast (no kernel involvement).

Disadvantages:
e If one thread makes a blocking system call — entire process blocks.

e No true parallelism on multiprocessor systems.

Examples:

e Older thread systems like Green Threads (early Java).
One-to-One Model (1:1)
Description:

e FEach user thread maps to one kernel thread.

e The OS handles scheduling and management of all threads.

Advantages:
e If one thread blocks, others continue execution.

e True concurrency on multiprocessor systems.

Disadvantages:
e More overhead due to kernel involvement.

e (Creating many threads may burden the system.

Examples:
e Windows, Linux, Solaris 9 and later.
Many-to-Many Model (M:N)
Description:
e Multiple user threads are mapped to a smaller or equal number of kernel
threads.

e The OS can schedule kernel threads on available processors, while the
thread library maps user threads to them dynamically.

Advantages:
e Combines flexibility and concurrency.

e If one thread blocks, others can still run.
e Supports parallelism and better resource use.
Examples:

e Solaris, Windows with ThreadFiber package, Modern UNIX systems.
3 Marks

Consider the following set of processes with their respective burst times and
arrival

times:

a) Draw Gantt charts and calculate the average waiting time and average
turnaround time using the FCFS, SRTF, and Round Robin (quantum =3

ms) scheduling algorithms.

10

Arrival Time

Process Burst Time (s
ri 0 8
P2 1 4
r3 2 9
Pa 3 =]
\
FcFs.

el

g!

D,Q\

i

3]
%

l

&

Y
c»eb;ﬂo

Gant chaxt ! o

Prvcess a1 | BT | eT | Tov | wT
P 0 8 F 1 F |+ q
" ' q Y Y o
Ps . 9 Q¢ QY s
P leals | ol # | & |
52 26
[P

AR ERRRE
‘ S b ¥ @

Avera%e WT* 6/g = 6-5mmu

ﬂvera%e TAT

5&/L11' 18 ™.

— 8 MoK

QOmd Q_O_klflw [3 @ wantuwry) Hme)
pm%‘é, BT | &t T TAT | Wl
P o) WAE (238 23 Xy
iy ' Yro e |15 | 4l
Pq / 3 g 2 91 ag 3
w— - | A
e e [P PP TPl [Py TP T Ps]
0 3 A 9 12 15 e E] A 23 24
Avevage T » 54/4 - (35
i Average TAT = go/, - Q06 ML — gmomlg&
o U _—

	1. User-Oriented Services
	2. System-Oriented Services
	Comparison of Batch, Time-Sharing, and Distributed Operating Systems
	Explanation
	Role of PCB During Context Switch
	Types of IPC Mechanisms
	Shared Memory System
	Concept:
	How it Works:
	Concept:
	How it Works:
	
	2 marks
	Many-to-One Model (M:1)
	One-to-One Model (1:1)
	Many-to-Many Model (M:N)

