
USN

Internal Assessment Test 1 –November-2025
Sub: DATA STRUCTURES AND APPLICATIONS Sub Code: BCS304 Branch: AIML & CSML

Date: Duration: 90
minutes Max Marks: 50 Sem/Sec: III -A, B, C OBE

Answer any FIVE FULL Questions MARKS CO RBT

1 a

Define Data Structures. Explain the classification o f data structures with a neat diagram.
DATA STRUCTURE1M
Data structure is a representation of the logical relationships existing between individual
elements of data. A data structure is a way of organizing all data items that considers not only
the elements stored but also their relationship to each other.
The logical or mathematical model of a particular organization of data is called a data
structure.

The non-primitive data structures is further classified into 1M(daigram)

1. Linear Data Structure 2M
2. Non-linear Data Structure 2M
1. Linear Data Structure: A data structure is said to be linear if its elements form a sequence or a
linear list. There are basically two ways of representing such linear structure in memory. a. One way
is to have the linear relationships between the elements represented by means of sequential memory
location. These linear structures are called arrays.
b. The other way is to have the linear relationship between the elements represented by means of
pointers or links. These linear structures are called linked lists. The common examples of linear data
structure are Arrays, Queues, Stacks, Linked lists
2. Non-linear Data Structure: A data structure is said to be non-linear if the data are not arranged in
sequence or a linear. The insertion and deletion of data is not possible in linear fashion. This
structure is mainly used to represent data containing a hierarchical relationship between elements.
Trees and graphs are the examples of non-linear data structure.

6 1 L2

b

Differentiate structures and unions.

Solution
3M

4 1 L2

Example Declaration 1M
structure
struct student { int id; char name[20]; float marks; };
union
union data { int i; float f; char ch; };

2 a

Explain various memory allocation techniques? Explain how memory can be dynamically
allocated using malloc().
Solution
various memory allocation techniques
Static Memory Allocation 1M

4 2 L2

https://www.geeksforgeeks.org/c/address-function-c-cpp/

Dynamic Memory Allocation functions in C: 2M
malloc()

Related header file is stdlib.h>
These functions provide a complete set of memory allocation, reallocation, deallocation, and heap
management tools.
malloc()
Syntax:

ptr = (cast-type*) malloc(byte-size);

Here, ptr is pointer of cast-type. The malloc() function returns a pointer to an area of memory with
size of byte size. If the space is insufficient, allocation fails and returns NULL pointer.
Example:

ptr = (int*) malloc(100 * sizeof(int));

b

Write a C Functions to implement pop, push and display operations for
stacks using arrays.
2(each function)*3=6
Solution:- 2(each function)*3=6
int stack[MAX];
int top = -1;

// Function to push an element into the stack
void push(int value) {
if (top == MAX - 1) {
printf("Stack Overflow! Cannot push %d\n", value);

} else {
top++;
stack[top] = value;
printf("%d pushed into the stack.\n", value);

}
}

// Function to pop an element from the stack
void pop() {
if (top == -1) {
printf("Stack Underflow! No elements to pop.\n");

} else {
printf("%d popped from the stack.\n", stack[top]);
top--;

}
}

// Function to display all elements in the stack
void display() {
if (top == -1) {
printf("Stack is empty.\n");

} else {
printf("Stack elements are:\n");
for (int i = top; i >= 0; i--) {
printf("%d\n", stack[i]);

}
}

}

6 1 L3

3
Evaluate the following postfix expressions,
1. abc+*de/- where a=5, b=6, c=2, d=12, e=4
2. AB+CDE-+/ where A=5, B=5, C=4, D=7, E=1

10 2 L3

Solution
Answer 1: 37 5M
Answer 2: 1 5M

4

Explain linked singly linked list with example:
i) Insert a node o f the beginningii)Delete a node at the front iii) Display

Solution -
singly linked list explaination 2.5M
-A linked list is a dynamic data structure where each element (called a node) is made up of two
items - the data and a reference (or pointer) which points to the next node. A linked list is a
collection of nodes where each node is connected to the next node through a pointer.

The following examples of linked lists indicate that the nodes of a list need not occupy
adjacent elements in the arrays INFO and LINK, and that more than one list may be
maintained in the same linear arrays INFO and LINK. However, each list must have its
own pointer variable giving the location of its first node.

START=9 INFO[9]=N
LINK[3]=6 INFO[6]=V
LINK[6]=11 INFO[11]=E
LINK[11]=7 INFO[7]= X
LINK[7]=10 INFO[10]= I
LINK[10]=4 INFO[4]= T
LINK[4]= NULL value, So the list has ended

10 3 L2

Defining a node structure

typedef struct listNode *listPointer typedef struct {
char data[4]; listPointer list;
} listNode;

Create a New Empty list
listPointer first = NULL

To create a New Node
MALLOC (first, sizeof(*first));

To place the data into NODE
strcpy(first→ data,”BAT”); first→ link = NULL

Function to insert a node at the beginning-2.5M
void insertAtBeginning(int value) {
struct Node* newNode = (struct Node*)malloc(sizeof(struct Node));
newNode->data = value;
newNode->next = head; // Point new node to current head
head = newNode; // Move head to new node
printf("%d inserted at the beginning.\n", value);

}
Function to delete a node from the front-2.5M
void deleteFromFront() {
if (head == NULL) {
printf("List is empty. Nothing to delete.\n");

} else {
struct Node* temp = head;
head = head->next; // Move head to next node
printf("%d deleted from the front.\n", temp->data);
free(temp); // Free old head

Function to display the list- 2.5M
void display() {
if (head == NULL) {
printf("List is empty.\n");

} else {
struct Node* temp = head;
printf("Linked List: ");
while (temp != NULL) {
printf("%d -> ", temp->data);
temp = temp->next;

}

printf("NULL\n");
}

}

5

What is Ciculay queue? How insertion () , deletion () and display ()done on circular queue.
CIRCULAR QUEUES- 2.5

It is “The queue which wrap around the end of the array.” The array positions are arranged in a
circle as shown in figure.
In this convention the variable front is changed. front variable points one position
counterclockwise from the location of the front element in the queue. The convention for rear is
unchanged.

Implementation of Circular Queue Operations
When the array is viewed as a circle, each array position has a next and a previous position. The
position next to MAX-QUEUE-SIZE -1 is 0, and the position that precedes 0 is MAX-QUEUE-
SIZE -1.

When the queue rear is at MAX_QUEUE_SIZE-1, the next element is inserted at position 0.

In circular queue, the variables front and rear are moved from their current position to the next
position in clockwise direction. This may be done using code

if (rear = = MAX_QUEUE_SIZE-1) rear = 0;
else rear++;
Add to a circular queue 2.5M

void addq(element item)
{
rear = (rear +1) % MAX_QUEUE_SIZE; if (front == rear)
queueFull();
queue [rear] = item;
}
Delete from a circular queue 2.5M

element deleteq()
{ /* remove front element from the queue */ element item;
if (front == rear)
return queueEmpty(); /* return an error key */ front = (front+1)% MAX_QUEUE_SIZE;
return queue[front];
}

Display 2.5M
Steps:
If queue is empty, display message.

10 2 L2

Start from front, print elements until you reach rear.
Use (i + 1) % MAX to move circularly.

6

Discuss Sparse matrix? Give the triplet form o f a given matrix and find its transpose
SPARSE MATRIX REPRESENTATION 2M
• We can classify uniquely any element within a matrix by using the triple . Therefore, we
can use an array of triples to represent a sparse matrix.
• Sparse matrix contains many zero entries.
• When a sparse matrix is represented as a 2-dimensional array, we waste space For ex, if
100*100 matrix contains only 100 entries then we waste 9900 out

4M

10 3 L3

	Static Memory Allocation 1M
	CIRCULAR QUEUES- 2.5

