

Faculty Signature​ ​ ​ CCI Signature​​ ​ HOD Signature

USN

Internal Assessment Test 1 – September 2025

Sub: Software Engineering and Project Management Sub Code: BCS501 Branch: AIML
Date: Duration: 90 mins Max Marks: 50 Sem/Sec: V OBE

Answer any FIVE FULL Questions MARKS CO RBT
1 Explain Boehm Spiral process model with a neat diagram. Mention its

advantages and disadvantages.
10M CO1 L1

2 a) Explain principles of agile process development. 6M CO1 L2
2 b) Explain different types of Software Application Domain. 4M CO1 L1

3 Explain CRC Modelling and Data Modelling with an example. 10M CO1 L2

4 Apply the elements of requirement modeling to design a railway reservation system. 10M CO2 L3

5 a) Draw the Activity diagram and Swimlane diagram for Safe home System? 5M CO2 L3

5 b) How would you apply Industrial Extreme Programming in a large enterprise project,
and how would this differ from applying traditional Extreme Programming?

5M CO3 L1

6 Explain: i. Dynamic System development Method ii. Feature Driven Development 10M CO3 L2

Faculty Signature​ ​ ​ CCI Signature​​ ​ HOD Signature

--

USN

Internal Assessment Test 1 – September 2025

Sub: Software Engineering and Project Management Sub Code: BCS501 Branch: AIML
Date: Duration: 90 mins Max Marks: 50 Sem/Sec: V OBE

Answer any FIVE FULL Questions MARKS CO RBT
1 Explain Boehm Spiral process model with a neat diagram. Mention its

advantages and disadvantages.
10M CO1 L1

2 a) Explain principles of agile process development. 6M CO1 L2

2 b) Explain different types of Software Application Domain. 4M CO1 L1

3 Explain CRC Modelling and Data Modelling with an example. 10M CO1 L2

4 Apply the elements of requirement modeling to design a railway reservation system. 10M CO2 L3

5 a) Draw the Activity diagram and Swimlane diagram for Safe home System? 5M CO2 L3

5 b) How would you apply Industrial Extreme Programming in a large enterprise project, and
how would this differ from applying traditional Extreme Programming?

5M CO3 L1

6 Explain: i. Dynamic System development Method ii. Feature Driven Development 10M CO3 L2

USN

Internal Assessment Test 1 – September 2025

Sub: Software Engineering and Project Management Sub Code: BCS501 Branch: AIML
Date: Duration: 90 mins Max Marks: 50 Sem/Sec: V OBE

Answer any FIVE FULL Questions MARKS CO RBT
1 Explain Boehm Spiral process model with a neat diagram. Mention its

advantages and disadvantages.

Explanation (4M)
The Spiral model is an evolutionary software process model originally proposed by
Barry Boehm. It is notable for coupling the iterative nature of prototyping with the
controlled and systematic aspects of the waterfall model. The model is defined as a
risk-driven process model generator used to guide multi-stakeholder concurrent
engineering of software-intensive systems.

The Spiral model’s two main distinguishing features are its cyclic approach for
incrementally growing a system’s degree of definition and implementation while
simultaneously decreasing its degree of risk. Risk is explicitly considered as the team
makes each revolution around the spiral.

Software is developed in a series of evolutionary releases. During early iterations, the
release might be a model or a prototype. During later iterations, progressively more
complete versions of the engineered system are produced.

The software team performs activities implied by a circuit around the spiral in a
clockwise direction, beginning at the center. A set of anchor point milestones (a
combination of work products and conditions attained along the path) are noted for
each evolutionary pass to ensure stakeholder commitment to feasible solutions.

Diagram (2M)

Communication: Includes activities like requirements gathering.

10M CO1 L1

Planning: Includes estimation, scheduling, and risk analysis. Each pass through this
region results in adjustments to the project plan, and cost and schedule are adjusted
based on customer feedback after delivery.
Modeling: Includes analysis and design.
Construction: Includes code and test.
Deployment: Includes delivery and feedback.

Arrows pointing inward along the axis separating the deployment region from the
communication region indicate a potential for local iteration along the same spiral path.

Advantages (2M)
1. Realistic for Large Systems: It is considered a realistic approach for the development
of large-scale systems and software.
2. Explicit Risk Management: It demands a direct consideration of technical risks at all
stages of the project. Because the software evolves incrementally, the developer and
customer are able to better understand and react to risks at each evolutionary level.
3. Incorporates Prototyping: It utilizes prototyping as a risk reduction mechanism and
allows the prototyping approach to be applied at any stage in the evolution of the
product.
4. Iterative and Systematic: It maintains the systematic stepwise approach suggested by
the classic life cycle but integrates it into an iterative framework that more realistically
reflects the real world.

Disadvantages (2M)
1. Controllability Concerns: It may be difficult to convince customers (especially in
contract situations) that the evolutionary approach is controllable.
2. High Demand for Expertise: It demands considerable risk assessment expertise and
relies heavily on this expertise for success. If a major risk is not uncovered and
managed, problems will undoubtedly occur.
3. Conflict with Fixed Budgeting: If management demands fixed-budget development
(which is generally noted as a bad idea), the model can be problematic because the
project cost is revisited and revised after each circuit is completed.

2 a) Explain principles of agile process development.

Principles (6M - 0.5M each)
1. The primary goal is to satisfy the customer through early and continuous delivery of
valuable software.
2. Agile processes welcome changing requirements, even late in development, utilizing
change for the customer’s competitive advantage.
3. Working software is the primary measure of progress.
4. Working software must be delivered frequently, from a couple of weeks to a couple
of months, with a preference for the shorter timescale.
5. Projects must be built around motivated individuals, who should be provided the
necessary environment and support, and trusted to get the job done.
6. Business people and developers must work together daily throughout the project.
7. The most efficient and effective method of conveying information is face-to-face
conversation.

6M CO1 L1

8. The best architectures, requirements, and designs emerge from self–organizing
teams.
9. Agile processes promote sustainable development, meaning sponsors, developers,
and users should be able to maintain a constant pace indefinitely.
10. Continuous attention to technical excellence and good design enhances agility.
11. Simplicity - the art of maximizing the amount of work not done—is essential.
12. The team reflects at regular intervals on how to become more effective, then tunes
and adjusts its behaviour accordingly.

2 b) Explain different types of Software Application Domain.

1. System Software: This category consists of a collection of programs written
specifically to service other programs. This software area is characterized by heavy
interaction with computer hardware, usage by multiple users, concurrent operation
(requiring scheduling and resource sharing), complex data structures, and multiple
external interfaces. Examples include compilers, editors, file management utilities,
operating system components, and drivers.
2. Application Software: These are stand-alone programs that solve a specific business
need. Applications process either business or technical data in a manner that facilitates
business operations or aids in management/technical decision making. This also
includes applications used to control business functions in real-time, such as
point-of-sale transaction processing.
3. Engineering/Scientific Software: Historically characterized by "number crunching"
algorithms. Applications range widely, covering fields from astronomy to automated
manufacturing, and from automotive stress analysis to space shuttle orbital dynamics.
Modern applications in this area are moving beyond conventional numerical algorithms
(e.g., computer-aided design and system simulation).
4. Embedded Software: This software resides within a product or system and is used to
perform a limited and specialized set of functions (e.g., controlling the functions of a
digital keypad, or embedded within a dashboard instrument system).
5. Product-line Software: This software is designed to provide a specific capability for
use by many different customers. It may target niche esoteric marketplaces (like
inventory control products) or large mass consumer markets (such as spreadsheets,
word processing, database management, and entertainment software).
6. Web Applications (WebApps): This is a network-centric software category that spans
a wide range of applications. They have evolved from simple forms to sophisticated
computing tools that provide stand-alone function and integrate with corporate
databases and business applications.
7. Artificial Intelligence (AI) Software: This type of software makes use of
non-numerical algorithms to address complex problems that are not susceptible to
straightforward analysis. Applications include expert systems, robotics, pattern
recognition (image and voice), theorem proving, artificial neural networks, and game
playing.

4M CO1 L2

3 Explain CRC Modelling and Data Modelling with an example.

CRC (Class-Responsibility-Collaborator) Modelling (5M)

10M CO1 L2

Class-Responsibility-Collaborator (CRC) modeling provides a simple means for
identifying and organizing the classes that are relevant to system or product
requirements. It is an effective mechanism for thinking about the software in an
object-oriented context. A CRC model is typically a collection of standard index cards
(or virtual cards) divided into three key sections:
1. Class: Written along the top of the card, this is the name of the object-oriented class
being defined.
2. Responsibility (R): Listed on the left side, responsibilities are the attributes and
operations relevant for the class. Simply put, a responsibility is "anything the class
knows or does".
3. Collaborator (C): Listed on the right side, collaborators are those classes that are
required to provide the current class with the information needed to complete a
responsibility. A collaboration implies either a request for information or a request for
some action.

The CRC model is integral to class-based modeling. It helps ensure stakeholder
commitment to feasible solutions by facilitating effective architectural design. Teams
often role-play through use-case scenarios using these index cards to review the design
and determine if classes, responsibilities, and collaborations are complete and
consistent. For a hypothetical security function, a CRC index card for the FloorPlan
class might include responsibilities such as Manages floor plan positioning and
collaborators such as Wall and Camera, as the FloorPlan needs information from those
objects to fulfill its responsibilities.

Data Modelling Concepts (5M)
Definition and Purpose: Data modeling is performed when software requirements
include the need to create, extend, or interface with a database or when complex data
structures must be constructed and manipulated. It focuses on defining the information
space. The output, often a pictorial representation like the Entity-Relationship Diagram
(ERD), addresses all data objects processed by the application, their relationships, and
pertinent attributes.

Key Elements:
1. Data Objects: A representation of composite information that must be understood by
the software. A data object encapsulates data only; it contains no reference to
operations that act on the data (distinguishing it from an object-oriented class).
Examples include a person, a place (e.g., a warehouse), or a structure.
2. Data Attributes: Attributes name a data object, describe its characteristics, and
sometimes reference another object. One or more attributes must be designated as an
identifier.
3. Relationships: These indicate the manner in which data objects are connected to one
another. Relationships are defined by establishing object/relationship pairs. The
properties of these relationships define their cardinality (the number of occurrences of
one object related to another) and modality (whether the relationship is mandatory or
optional).
Example: Consider two data objects, person and car. Relevant relationships between
them might be defined by the pairs:
• A person owns a car.

• A person is insured to drive a car.
These relationships would be illustrated graphically, often indicating multiplicity
(cardinality) to show if one person can own zero, one, or many cars.

4 Apply the elements of requirement modeling to design a railway reservation system.

Requirement modeling defines what the system should do by analyzing and specifying
user needs.
The main elements of requirement modeling are:

Scenario-based elements (2M)
These describe how users interact with the system.
Example:
Use Case 1 – Book Ticket: Passenger selects source, destination, date, train, class, and
confirms booking.
Use Case 2 – Cancel Ticket: Passenger enters PNR number and requests cancellation;
system updates seat availability and refunds fare.
Actors: Passenger, Admin, System.

Class-based elements (2M)
Identify key objects and their relationships.
Example classes:
Passenger, Train, Ticket, Payment, Reservation.
Relationships:
A Passenger books one or more Tickets.
A Train has multiple Reservations.

Behavioral elements (2M)
Show how the system behaves in response to events.
Example:
When the Book Ticket button is clicked → System checks seat availability →
Generates ticket → Updates train record.
Represented using state diagrams or activity diagrams.

Flow-oriented elements (2M)
Define how data moves through the system.
Example Data Flow Diagram (DFD):
Level 0: Passenger → Railway Reservation System → Train Database → Ticket
Output.
Level 1: Includes processes like Check Availability, Book Ticket, Generate PNR,
Cancel Ticket, Refund Payment.

Functional elements (2M)
Specify what functions the system performs.
Example Functions:
Login/Registration
Search Trains
Check Seat Availability

10M CO2 L3

Book/Cancel Ticket
Generate Reports (for admin)

5 a) Draw the Activity diagram and Swimlane diagram for Safe home System?

Activity Diagram (3M)

Swimlane Diagram (2M)

5M CO2 L3

5 b) How would you apply Industrial Extreme Programming in a large enterprise project,

and how would this differ from applying traditional Extreme Programming?

Application of IXP in a Large Enterprise Project (3M)
Scaling Agile Practices:
Implement XP core practices (pair programming, test-driven development, continuous
integration) across multiple teams using coordination tools and shared repositories.
IXP adds project management and business alignment practices to handle large project
scope.
Enhanced Communication & Planning:
Use structured communication channels and release planning meetings involving
multiple stakeholders, departments, and customers.
Process Integration:
Integrate with enterprise systems like DevOps pipelines, CI/CD, and enterprise
architecture frameworks to ensure scalability and maintainability.
Governance and Risk Management:
IXP introduces practices like Project Community and Readiness Assessment to manage
risks and organizational readiness.

Differences from Traditional XP (2M)

5M CO3 L3

Aspect Traditional XP Industrial XP (IXP)

Project Size Suited for small teams (5–10
members)

Designed for large, distributed tea

Formality Informal and lightweight Adds formal management
reporting processes

Focus Code quality and developer
collaboration

Enterprise alignment, scalability
risk control

Documentatio
n

Minimal Moderate – to support ente
governance

6 Explain: i. Dynamic System development Method ii. Feature Driven Development

Dynamic System Development Method (DSDM) (5M)
DSDM is an agile project delivery framework that emphasizes rapid development, user
involvement, and incremental delivery of systems that meet business needs.

Key Principles (2M)
Focus on business need.
Deliver on time.
Collaborate effectively.
Never compromise quality.
Build incrementally from firm foundations.
Develop iteratively.
Communicate continuously and clearly.
Demonstrate control.

Phases of DSDM Life Cycle (2M)
Pre-project: Feasibility and business case preparation.
Feasibility Study: Determines whether DSDM is suitable.
Business Study: Understands the business and sets priorities.
Functional Model Iteration: Develops prototypes and gathers feedback.
Design and Build Iteration: Refines and builds working components.
Implementation: Deploys system into the business environment.
Post-project: Evaluates performance and benefits.

Advantages (1M)
Delivers business value quickly.
Encourages active user participation.
Provides strong project control and predictability.

Feature Driven Development (FDD)
FDD is a model-driven, short-iteration process focused on designing and building
features that deliver tangible results in each iteration.

10M CO3 L2

Main Process Steps (2M)
Develop an overall model.
Build a features list.
Plan by feature.
Design by feature.
Build by feature.

Key Roles in FDD (1M)
Project Manager
Chief Architect
Chief Programmer
Class Owner
Domain Expert

Characteristics & Advantages (2M)
Emphasizes object-oriented modeling and small feature sets.
Encourages frequent builds and early visible progress.
Provides clear progress tracking through features completed.
Well-suited for large teams and long-term projects.

Faculty Signature​ ​ ​ CCI Signature​​ ​ HOD Signature

