|       | <br> | <br> | <br> |  |  |
|-------|------|------|------|--|--|
| TICNI |      |      |      |  |  |
| USIN  |      |      |      |  |  |
|       |      |      |      |  |  |
|       |      |      |      |  |  |



Internal Assessment Test 1 – September 2025

| Sub:  | Software Eng                                                                                                                                              | Software Engineering and Project Management Su |           |              |       |               | BCS501      | Branch: | AII | ЛL  |  |  |  |
|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|-----------|--------------|-------|---------------|-------------|---------|-----|-----|--|--|--|
| Date: |                                                                                                                                                           | Duration:                                      | 90 mins   | Max Marks:   | 50    | Sem/Sec:      | V           | (       | OBE |     |  |  |  |
|       | Answer any FIVE FULL Questions                                                                                                                            |                                                |           |              |       |               |             |         | CO  | RBT |  |  |  |
|       | Explain Boehm Spiral process model with a neat diagram. Mention its advantages and disadvantages.                                                         |                                                |           |              |       |               |             |         | CO1 | L1  |  |  |  |
| 2 a)  | Explain principles of agile process development.                                                                                                          |                                                |           |              |       |               |             |         | CO1 | L2  |  |  |  |
| 2 b)  | Explain different types of Software Application Domain.                                                                                                   |                                                |           |              |       |               |             | 4M      | CO1 | L1  |  |  |  |
| 3     | Explain CRC Modelling and Data Modelling with an example.                                                                                                 |                                                |           |              |       |               |             | 10M     | CO1 | L2  |  |  |  |
| 4     | Apply the elements of requirement modeling to design a railway reservation system.                                                                        |                                                |           |              |       |               |             | 10M     | CO2 | L3  |  |  |  |
| 5 a)  | Draw the Activity diagram and Swimlane diagram for Safe home System?                                                                                      |                                                |           |              |       |               |             |         | CO2 | L3  |  |  |  |
|       | How would you apply Industrial Extreme Programming in a large enterprise project and how would this differ from applying traditional Extreme Programming? |                                                |           |              |       |               |             | 5M      | CO3 | L1  |  |  |  |
| 6     | Explain: i. Dyna                                                                                                                                          | amic System                                    | developme | nt Method ii | . Fea | ture Driven I | Development | 10M     | CO3 | L2  |  |  |  |

|     | Faculty Signature | CCI Signa | ature HOD Signature   |       |
|-----|-------------------|-----------|-----------------------|-------|
|     |                   |           |                       |       |
| USN |                   |           | E CAM RICHITUTE OF IT | CMRIT |

Internal Assessment Test 1 – September 2025

|       |                                                                                                                                                            |             | Internal     | Assessment 1 | cst i –       | September 2   | .023              |         |     |      |  |
|-------|------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|--------------|--------------|---------------|---------------|-------------------|---------|-----|------|--|
| Sub:  | Software Engir                                                                                                                                             | neering and | l Project Ma | nagement     |               | Sub Code:     | BCS501            | Branch: | AIN | AIML |  |
| Date: |                                                                                                                                                            | Duration:   | 90 mins      | Max Marks    | : 50          | Sem/Sec:      | V                 | C       | )BE |      |  |
|       |                                                                                                                                                            | <u>Answ</u> | er any FIV   | E FULL Que   | <u>stions</u> |               |                   | MARKS   | CO  | RBT  |  |
|       | Explain Boehm Spiral process model with a neat diagram. Mention its advantages and disadvantages.                                                          |             |              |              |               |               |                   |         | CO1 | L1   |  |
|       | Explain principles of agile process development.                                                                                                           |             |              |              |               |               |                   |         | CO1 | L2   |  |
| 2 b)  | Explain different types of Software Application Domain.                                                                                                    |             |              |              |               |               |                   | 4M      | CO1 | L1   |  |
| 3     | Explain CRC Modelling and Data Modelling with an example.                                                                                                  |             |              |              |               |               |                   | 10M     | CO1 | L2   |  |
| 4     | Apply the elements of requirement modeling to design a railway reservation system.                                                                         |             |              |              |               |               |                   | 10M     | CO2 | L3   |  |
| 5 a)  | Draw the Activity diagram and Swimlane diagram for Safe home System?                                                                                       |             |              |              |               |               |                   | 5M      | CO2 | L3   |  |
|       | How would you apply Industrial Extreme Programming in a large enterprise project, and how would this differ from applying traditional Extreme Programming? |             |              |              |               |               | rise project, and | 5M      | CO3 | L1   |  |
| 6     | Explain: i. Dynar                                                                                                                                          | nic System  | developme    | nt Method    | ii. Fea       | ture Driven I | Development       | 10M     | CO3 | L2   |  |

| USN |  |  |  |  |  |
|-----|--|--|--|--|--|



Internal Assessment Test 1 – September 2025

| Sub:   | Software Engineering and Project Management                                                                                                                                                                                                                                                                                           |                                                                                                    |                                                                       | <del>, , , , , , , , , , , , , , , , , , , </del> | Sub Code: | BCS501        | Branch:                        | AII | ML  |    |
|--------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|---------------------------------------------------|-----------|---------------|--------------------------------|-----|-----|----|
| Date:  | Duration: 90 mins Max Marks: 50 Sem/Sec: V  Answer any FIVE FULL Questions                                                                                                                                                                                                                                                            |                                                                                                    |                                                                       |                                                   |           |               |                                |     | OBE |    |
|        | -                                                                                                                                                                                                                                                                                                                                     |                                                                                                    | MARKS                                                                 | CO                                                | RBT       |               |                                |     |     |    |
|        | Explain Boehm<br>advantages and                                                                                                                                                                                                                                                                                                       |                                                                                                    |                                                                       | ith a neat diagr                                  | am. M     | Iention its   |                                | 10M | CO1 | L1 |
| F      | Explanation (4                                                                                                                                                                                                                                                                                                                        | M)                                                                                                 |                                                                       |                                                   |           |               |                                |     |     |    |
|        | •                                                                                                                                                                                                                                                                                                                                     |                                                                                                    | •                                                                     | •                                                 |           | •             | ly proposed by                 | 1   |     |    |
|        | *                                                                                                                                                                                                                                                                                                                                     |                                                                                                    | _                                                                     | -                                                 |           | -             | yping with the                 | 1   |     |    |
|        |                                                                                                                                                                                                                                                                                                                                       | •                                                                                                  | -                                                                     |                                                   |           |               | is defined as a der concurrent | 1   |     |    |
|        | engineering of s                                                                                                                                                                                                                                                                                                                      |                                                                                                    | -                                                                     | -                                                 | ic iii    | uiti-stakenor | aci concurrent                 |     |     |    |
| i<br>S | The Spiral model's two main distinguishing features are its cyclic approach for incrementally growing a system's degree of definition and implementation while simultaneously decreasing its degree of risk. Risk is explicitly considered as the team makes each revolution around the spiral.                                       |                                                                                                    |                                                                       |                                                   |           |               |                                | ,   |     |    |
| r      | Software is developed in a series of evolutionary releases. During early iterations, the release might be a model or a prototype. During later iterations, progressively more complete versions of the engineered system are produced.                                                                                                |                                                                                                    |                                                                       |                                                   |           |               |                                |     |     |    |
| c      | The software team performs activities implied by a circuit around the spiral in a clockwise direction, beginning at the center. A set of anchor point milestones (a combination of work products and conditions attained along the path) are noted for each evolutionary pass to ensure stakeholder commitment to feasible solutions. |                                                                                                    |                                                                       |                                                   |           |               |                                |     |     |    |
| I      | Diagram (2M)                                                                                                                                                                                                                                                                                                                          |                                                                                                    |                                                                       |                                                   |           |               |                                |     |     |    |
|        |                                                                                                                                                                                                                                                                                                                                       |                                                                                                    |                                                                       |                                                   |           |               |                                |     |     |    |
|        |                                                                                                                                                                                                                                                                                                                                       |                                                                                                    |                                                                       |                                                   |           |               |                                |     |     |    |
|        |                                                                                                                                                                                                                                                                                                                                       | Objectives determination and identify alternative solutions  4. Review and plan for the next Phase | 2. Identify and resolve Risks  3. Develop next version of the Product |                                                   |           |               |                                |     |     |    |
| L<br>C | Communication                                                                                                                                                                                                                                                                                                                         | : Includes a                                                                                       | ctivities like                                                        | requirements g                                    | gather    | ring.         |                                |     |     |    |

| Planning: Includes estimation, scheduling, and risk analysis. Each pass through this region results in adjustments to the project plan, and cost and schedule are adjusted based on customer feedback after delivery.  Modeling: Includes analysis and design.  Construction: Includes code and test.  Deployment: Includes delivery and feedback.  Arrows pointing inward along the axis separating the deployment region from the communication region indicate a potential for local iteration along the same spiral path.  Advantages (2M)  1. Realistic for Large Systems: It is considered a realistic approach for the development of large-scale systems and software.  2. Explicit Risk Management: It demands a direct consideration of technical risks at all stages of the project. Because the software evolves incrementally, the developer and customer are able to better understand and react to risks at each evolutionary level.  3. Incorporates Prototyping: It utilizes prototyping as a risk reduction mechanism and allows the prototyping approach to be applied at any stage in the evolution of the product.  4. Iterative and Systematic: It maintains the systematic stepwise approach suggested by the classic life cycle but integrates it into an iterative framework that more realistically reflects the real world.  Disadvantages (2M)  1. Controllability Concerns: It may be difficult to convince customers (especially in contract situations) that the evolutionary approach is controllable.  2. High Demand for Expertise: It demands considerable risk assessment expertise and relies heavily on this expertise for success. If a major risk is not uncovered and managed, problems will undoubtedly occur.  3. Conflict with Fixed Budgeting: If management demands fixed-budget development (which is generally noted as a bad idea), the model can be problematic because the project cost is revisited and revised after each circuit is completed. |    |     |    |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|-----|----|
| 2 a) Explain principles of agile process development.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 6M | CO1 | L1 |
| Principles (6M - 0.5M each)  1. The primary goal is to satisfy the customer through early and continuous delivery of valuable software.  2. Agile processes welcome changing requirements, even late in development, utilizing change for the customer's competitive advantage.  3. Working software is the primary measure of progress.  4. Working software must be delivered frequently, from a couple of weeks to a couple of months, with a preference for the shorter timescale.  5. Projects must be built around motivated individuals, who should be provided the necessary environment and support, and trusted to get the job done.  6. Business people and developers must work together daily throughout the project.  7. The most efficient and effective method of conveying information is face-to-face conversation.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |     |    |

|      | 8. The best architectures, requirements, and designs emerge from self–organizing teams.  9. Agile processes promote sustainable development, meaning sponsors, developers, and users should be able to maintain a constant pace indefinitely.  10. Continuous attention to technical excellence and good design enhances agility.  11. Simplicity - the art of maximizing the amount of work not done—is essential.  12. The team reflects at regular intervals on how to become more effective, then tunes and adjusts its behaviour accordingly.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |     |     |    |
|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----|----|
| 2 b) | Explain different types of Software Application Domain.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 4M  | CO1 | L2 |
|      | 1. System Software: This category consists of a collection of programs written specifically to service other programs. This software area is characterized by heavy interaction with computer hardware, usage by multiple users, concurrent operation (requiring scheduling and resource sharing), complex data structures, and multiple external interfaces. Examples include compilers, editors, file management utilities, operating system components, and drivers.  2. Application Software: These are stand-alone programs that solve a specific business need. Applications process either business or technical data in a manner that facilitates business operations or aids in management/technical decision making. This also includes applications used to control business functions in real-time, such as point-of-sale transaction processing.  3. Engineering/Scientific Software: Historically characterized by "number crunching" algorithms. Applications range widely, covering fields from astronomy to automated manufacturing, and from automotive stress analysis to space shuttle orbital dynamics. Modern applications in this area are moving beyond conventional numerical algorithms (e.g., computer-aided design and system simulation).  4. Embedded Software: This software resides within a product or system and is used to perform a limited and specialized set of functions (e.g., controlling the functions of a digital keypad, or embedded within a dashboard instrument system).  5. Product-line Software: This software is designed to provide a specific capability for use by many different customers. It may target niche esoteric marketplaces (like inventory control products) or large mass consumer markets (such as spreadsheets, word processing, database management, and entertainment software).  6. Web Applications (WebApps): This is a network-centric software category that spans a wide range of applications. They have evolved from simple forms to sophisticated computing tools that provide stand-alone function and integrate with corporate databases a |     |     |    |
| 3    | Explain CRC Modelling and Data Modelling with an example.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 10M | CO1 | L2 |
|      | CRC (Class-Responsibility-Collaborator) Modelling (5M)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |     |     |    |

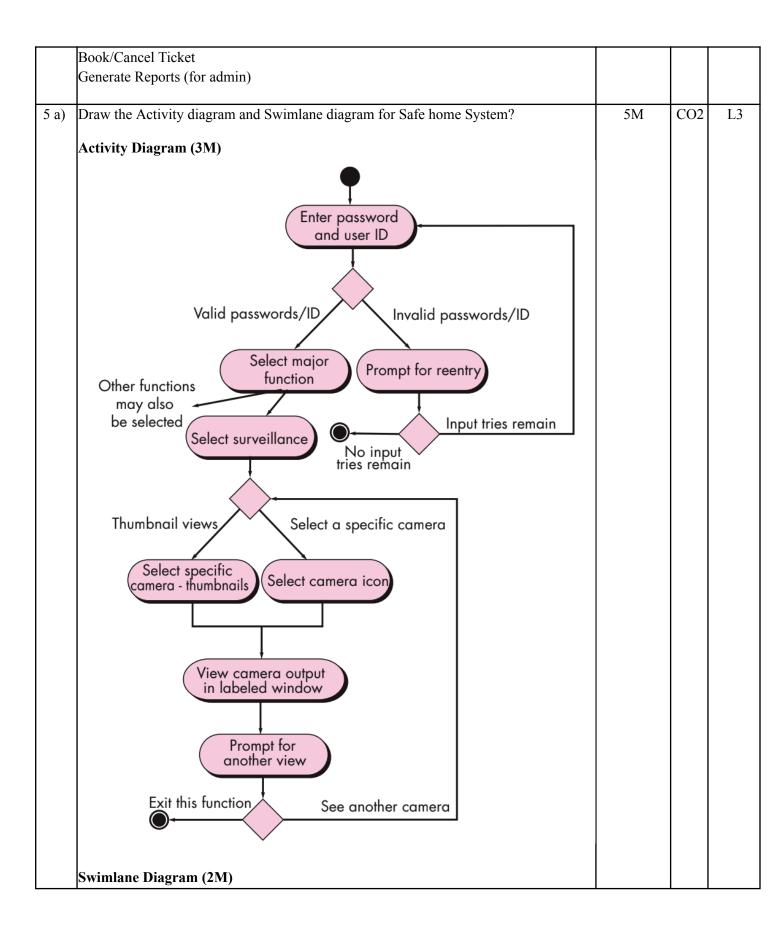
Class-Responsibility-Collaborator (CRC) modeling provides a simple means for identifying and organizing the classes that are relevant to system or product requirements. It is an effective mechanism for thinking about the software in an object-oriented context. A CRC model is typically a collection of standard index cards (or virtual cards) divided into three key sections:

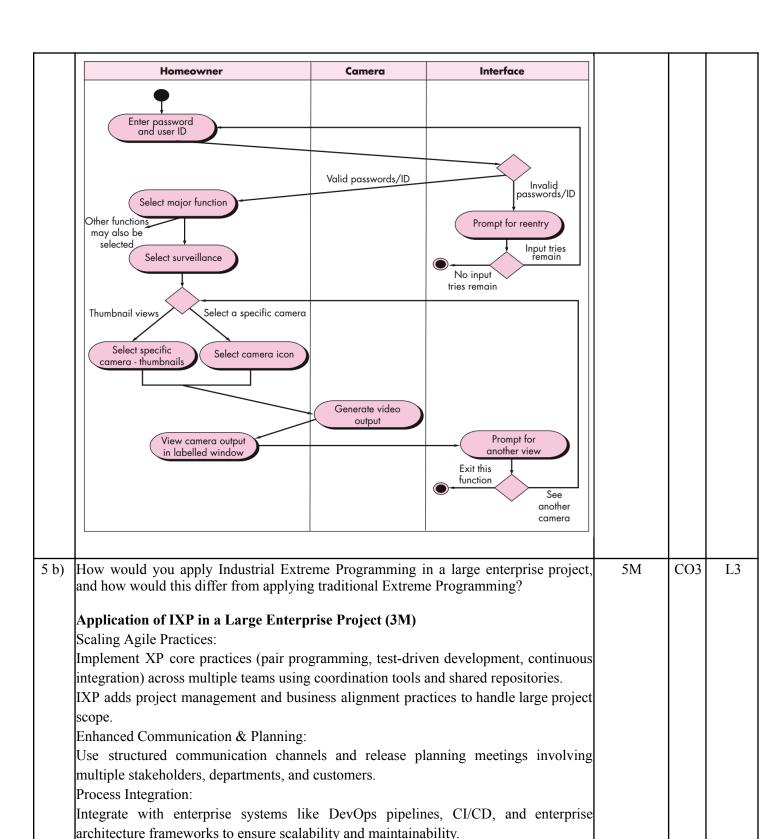
- 1. Class: Written along the top of the card, this is the name of the object-oriented class being defined.
- Responsibility (R): Listed on the left side, responsibilities are the attributes and operations relevant for the class. Simply put, a responsibility is "anything the class knows or does".
- 3. Collaborator (C): Listed on the right side, collaborators are those classes that are required to provide the current class with the information needed to complete a responsibility. A collaboration implies either a request for information or a request for some action.

The CRC model is integral to class-based modeling. It helps ensure stakeholder commitment to feasible solutions by facilitating effective architectural design. Teams often role-play through use-case scenarios using these index cards to review the design and determine if classes, responsibilities, and collaborations are complete and consistent. For a hypothetical security function, a CRC index card for the FloorPlan class might include responsibilities such as Manages floor plan positioning and collaborators such as Wall and Camera, as the FloorPlan needs information from those objects to fulfill its responsibilities.

#### Data Modelling Concepts (5M)

Definition and Purpose: Data modeling is performed when software requirements include the need to create, extend, or interface with a database or when complex data structures must be constructed and manipulated. It focuses on defining the information space. The output, often a pictorial representation like the Entity-Relationship Diagram (ERD), addresses all data objects processed by the application, their relationships, and pertinent attributes.


#### Key Elements:


- 1. Data Objects: A representation of composite information that must be understood by the software. A data object encapsulates data only; it contains no reference to operations that act on the data (distinguishing it from an object-oriented class). Examples include a person, a place (e.g., a warehouse), or a structure.
- Data Attributes: Attributes name a data object, describe its characteristics, and sometimes reference another object. One or more attributes must be designated as an identifier.
- 3. Relationships: These indicate the manner in which data objects are connected to one another. Relationships are defined by establishing object/relationship pairs. The properties of these relationships define their cardinality (the number of occurrences of one object related to another) and modality (whether the relationship is mandatory or optional).

Example: Consider two data objects, person and car. Relevant relationships between them might be defined by the pairs:

• A person owns a car.

| • , | A person is insured to drive a car.                                                                                 |     |     |   |
|-----|---------------------------------------------------------------------------------------------------------------------|-----|-----|---|
| Tl  | hese relationships would be illustrated graphically, often indicating multiplicity                                  |     |     |   |
| (c  | ardinality) to show if one person can own zero, one, or many cars.                                                  |     |     |   |
| A   | pply the elements of requirement modeling to design a railway reservation system.                                   | 10M | CO2 | L |
| R   | equirement modeling defines what the system should do by analyzing and specifying                                   |     |     |   |
| us  | ser needs.                                                                                                          |     |     |   |
| T1  | he main elements of requirement modeling are:                                                                       |     |     |   |
| S   | cenario-based elements (2M)                                                                                         |     |     |   |
| T   | hese describe how users interact with the system.                                                                   |     |     |   |
| E   | xample:                                                                                                             |     |     |   |
| U   | se Case 1 – Book Ticket: Passenger selects source, destination, date, train, class, and                             |     |     |   |
| cc  | onfirms booking.                                                                                                    |     |     |   |
| U   | se Case 2 – Cancel Ticket: Passenger enters PNR number and requests cancellation;                                   |     |     |   |
|     | stem updates seat availability and refunds fare.                                                                    |     |     |   |
| 1 - | ctors: Passenger, Admin, System.                                                                                    |     |     |   |
| C   | lass-based elements (2M)                                                                                            |     |     |   |
| - 1 | entify key objects and their relationships.                                                                         |     |     |   |
|     | xample classes:                                                                                                     |     |     |   |
|     | assenger, Train, Ticket, Payment, Reservation.                                                                      |     |     |   |
|     | elationships:                                                                                                       |     |     |   |
|     | Passenger books one or more Tickets.                                                                                |     |     |   |
| - 1 | Train has multiple Reservations.                                                                                    |     |     |   |
| В   | ehavioral elements (2M)                                                                                             |     |     |   |
| - 1 | now how the system behaves in response to events.                                                                   |     |     |   |
| - 1 | xample:                                                                                                             |     |     |   |
| - 1 | Then the Book Ticket button is clicked $\rightarrow$ System checks seat availability $\rightarrow$                  |     |     |   |
| - 1 | enerates ticket → Updates train record.                                                                             |     |     |   |
| - 1 | epresented using state diagrams or activity diagrams.                                                               |     |     |   |
|     |                                                                                                                     |     |     |   |
|     | low-oriented elements (2M)                                                                                          |     |     |   |
|     | efine how data moves through the system.                                                                            |     |     |   |
| - 1 | xample Data Flow Diagram (DFD):                                                                                     |     |     |   |
| - 1 | evel 0: Passenger $\rightarrow$ Railway Reservation System $\rightarrow$ Train Database $\rightarrow$ Ticket utput. |     |     |   |
| L   | evel 1: Includes processes like Check Availability, Book Ticket, Generate PNR,                                      |     |     |   |
| C   | ancel Ticket, Refund Payment.                                                                                       |     |     |   |
| F   | unctional elements (2M)                                                                                             |     |     |   |
|     | pecify what functions the system performs.                                                                          |     |     |   |
| ^   | xample Functions:                                                                                                   |     |     |   |
|     | ogin/Registration                                                                                                   |     |     |   |
| - 1 | earch Trains                                                                                                        |     |     |   |
| - 1 | heck Seat Availability                                                                                              |     |     |   |





IXP introduces practices like Project Community and Readiness Assessment to manage

Governance and Risk Management:

risks and organizational readiness.

Differences from Traditional XP (2M)

| Aspect                                                                                                                                                                                                                                                                                                                                                                                                                                             | Traditional XP                                                                                                                                                                                                                                                                                                                                                             | Industrial XP (IXP)                                                                                                    |     |     |    |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|-----|-----|----|
| Project Size                                                                                                                                                                                                                                                                                                                                                                                                                                       | Suited for small teams (5–10 members)                                                                                                                                                                                                                                                                                                                                      | Designed for large, distributed te                                                                                     |     |     |    |
| Formality                                                                                                                                                                                                                                                                                                                                                                                                                                          | Informal and lightweight                                                                                                                                                                                                                                                                                                                                                   | Adds formal management reporting processes                                                                             |     |     |    |
| Focus                                                                                                                                                                                                                                                                                                                                                                                                                                              | Code quality and developer collaboration                                                                                                                                                                                                                                                                                                                                   | Enterprise alignment, scalabilit risk control                                                                          |     |     |    |
| Documentatio<br>n                                                                                                                                                                                                                                                                                                                                                                                                                                  | Minimal                                                                                                                                                                                                                                                                                                                                                                    | Moderate – to support ent governance                                                                                   |     |     |    |
| 6 Explain: i. Dynam                                                                                                                                                                                                                                                                                                                                                                                                                                | nic System development Method                                                                                                                                                                                                                                                                                                                                              | ii. Feature Driven Development                                                                                         | 10M | CO3 | L2 |
| DSDM is an agile involvement, and  Key Principles (2) Focus on business Deliver on time. Collaborate effect Never compromis Build incremental Develop iterativel Communicate cont Demonstrate cont  Phases of DSDM Pre-project: Feasi Feasibility Study: Business Study: U Functional Model Design and Build Implementation: I Post-project: Eval  Advantages (1M) Delivers business Encourages active Provides strong provides strong properties. | stively. se quality. Illy from firm foundations. Illy. Intinuously and clearly. Intinuously and clearly. Intinuously and business case preparation Determines whether DSDM is suita Understands the business and sets pr I Iteration: Develops prototypes and Iteration: Refines and builds working Deploys system into the business en Illuates performance and benefits. | mphasizes rapid development, user it meet business needs.  able. iorities. gathers feedback. ng components. vironment. |     |     |    |

# Main Process Steps (2M)

Develop an overall model.

Build a features list.

Plan by feature.

Design by feature.

Build by feature.

# Key Roles in FDD (1M)

Project Manager

Chief Architect

Chief Programmer

Class Owner

Domain Expert

### Characteristics & Advantages (2M)

Emphasizes object-oriented modeling and small feature sets.

Encourages frequent builds and early visible progress.

Provides clear progress tracking through features completed.

Well-suited for large teams and long-term projects.

Faculty Signature

CCI Signature

**HOD Signature**