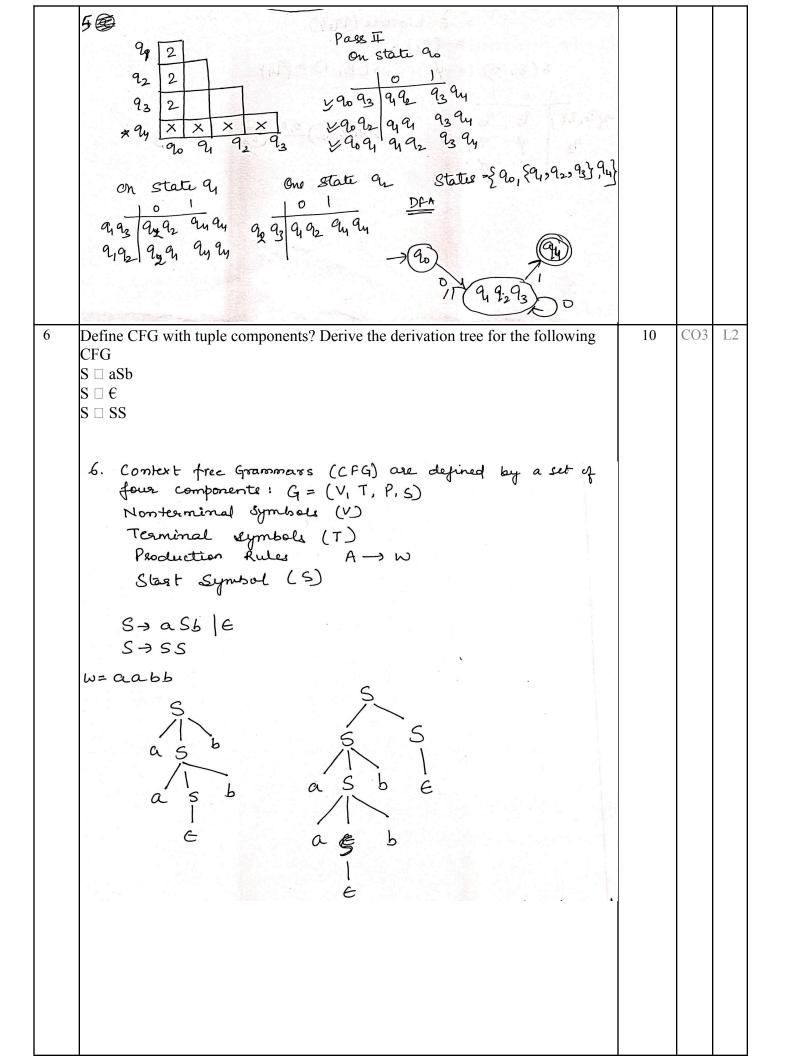

I							
ı							
		ION	r				
	,	0.01	l				


Internal Assessment Test 1 – November 2025

	Internal Assessment Test 1 –		.025				
Sub:	Theory of Computation	Sub Code:	BCS503	Branch	: AIM	IL/CSI IL	E
Date:	29/09/2025 Duration: 90 min's Max Marks: 50	Sem/Sec:	V /A,B CSE	AIML(A	.)	OE	BE
	Answer any FIVE FULL Question	<u>ons</u>		N	MARKS	CO	RBT
1.(a)	Define the following with examples: i) Alphabet ii) La alphabet.	nguage iii)	Power of		3	CO1	L1
	i) Alphabet						
	Definition: An alphabet is a finite set of symbols or characters fr can be formed in a formal language or system.	om which s	strings (word	s)			
	Example:						
	• The English alphabet: {a,b,c,,z}\{a, b, c, \ldo	ots, $z \setminus \{a,b\}$,c,,z}				
	• A binary alphabet: {0,1}\{0, 1\} {0,1}						
	ii) Language						
	Definition: A language over an alphabet is a set of strings (finite symbols from that alphabet. A language can be finite or	. /	composed o	f			
	Example:						
	 Over the alphabet {a,b}-a language could be th length: {ε,ab,ba,aabb,bbaa,},{ε,ab,ba,aabb,b 		strings with	even			
	iii) Power of Alphabet						
	Definition: The power of an alphabet (also called the cardinality number of distinct symbols in the alphabet.	of the alpl	nabet) is the				
	Example:						
	The English alphabet has a power of 26 because	e it contain	as 26 letters.				
	• The binary alphabet $\{0,1\}\setminus\{0,1\setminus\}\{0,1\}$ has a po	ower of 2.					
1.(b)	Design a DFA from the given NFA using a subset cons	struction m	ethod.		7	CO1	L3

Proof that the language $L = \{0^n 1^n / n \ge 1\}$ is not regular			
Proof by contradiction:			
Let's assume that L is regular.			
1. Given n>=1.			
2. Let choose $w = 0^n 1^n$ such that $ w = 2n > = n$.			
3. Using pumping lemma, given partition			
W = XYZ			
Such that $ xy \le n$ and			
$ \mathbf{y} > 0$			
Consider the string			
0000000 11111			
${Xy}$ ${z}$			
Where $x=0^m$ and $y=0^l$			
The string x and y consists of only 0's. $ xy \le n$			
4. Let select k=0			
$xy^{0}z = xz$			
$= 0^{n} \ln 1^{n} = 0^{m} 1^{n}$			
Where $m = n - y $			
Therefore, xy^0z not belongs to L			
=> L is not regular.			
4.(b) Define Regular expression. Write the regular expression for the following	5	CO2	L3
languages:		002	223
a. Strings of a's and b's starting with a and ending with b.			
b. $L = \{ a^n b^m (n + m) \text{ is even} \} $.			
Solution:			
A negation expression (DE) is a symbolic notation yard to describe a negation			
A regular expression (RE) is a symbolic notation used to describe a regular language. It defines a set of strings over a given alphabet using operators like:			
language. It defines a set of strings over a given alphabet using operators like.			
Concatenation: ababab means "a followed by b"			
• Union (or): a+ba + ba+b or a ba \mid ba b means "a or b"			
• Kleene star : a*a^*a* means "zero or more occurrences of a"			
• Parentheses for grouping: (a+b)*(a+b)^*(a+b)*			
Tarentheses for grouping. (a+b)**(a+b) (a+b)**			
a. a(a+b)*b			
b. $(aa)^*(bb)^* + a(aa)^*b(bb)^*$			
5 Minimize the following DFA using table filling method.	10	CO1	L2
20 (21)			
$\left(\frac{q_2}{q_2}\right)$			
	1		
23			
7.3			

(ii) Ab: Ambiguou rules that ca	s gramman: ref u produce mor	ers to a set	of production parse tree	
for the saw S-) a.S.b E , 5-> SS	e ip string			

Faculty Signature

CCI Signature

HOD Signature