

Sub:	Artificial Intelligence						BCS 515 B	Branch:	CSE	
Date:	30/09/2025	Duration:	90 mins	Max Marks:	50	Sem /	5 A,B,C			

USN [

b) What are the advantages and disadvantages of each approach?

Internal Assessment Test 1 – September 2025 **Artificial Intelligence** Sub Code: BCS515B Branch: CSE V/ A/B/C Date: 90 mins Max Marks: 50 Sem/Sec: OBE Answer any FIVE FULL Questions CO RBT Describe different types of Agent Programs? CO1 L2 10 Consider a Vacuum World with two locations A and B. The vacuum cleaner can move left or right 10 CO2 L3 and suck dirt. Initially, location A is dirty, and location B is clean. Represent this problem as a state space search by clearly specifying: (i) the initial state, (ii) goal state(s), (iii) possible actions, and (iv the state transition diagram. a)Explain the difference between uninformed (blind) and informed (heuristic) search strategies in AI (5+5)CO1 L2

CI CCI HoD

4	Provide the PEAS (Performance, Environment, Actuators, Sensors) specification for a robot designed	10	CO2	L2
	for part-picking.			
5	a) Define an agent and explain how it interacts with its environment, illustrating with a diagram.	(4+6)	CO2	L2
	b) List and explain the five essential components of a well-defined problem.			
6	Using Greedy Best-First Search, find a path from the start node S to the goal node G in the graph.	10	CO2	L3
	Edge costs: $S-A = 2$, $S-B = 4$, $A-B = 2$, $A-C = 3$, $B-C = 5$, $C-G = 4$.			
	Heuristic values: $h(S)=7$, $h(A)=6$, $h(B)=4$, $h(C)=2$, $h(G)=0$.			
	Show the step-by-step working of the Greedy Best-First algorithm (expand the node with smallest h)			
	and determine the final path and its total cost.			

CI CCI HoD

Answer 1 1. Simple Reflex Agent

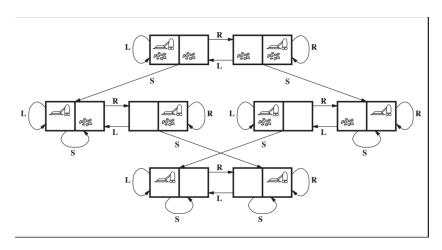
- 2. Model Reflex
- 3. Goal Based
- 4. Utility Based
- 5. Learning Agents

(all agents 1 marks each, Diagram and example 1 marks each)

Answer 2:

(i) Initial state:

(A, Dirty, Clean)


(ii) Goal state(s):

(A, Clean, Clean) or (B, Clean, Clean)

(iii) Actions:

- Suck cleans current square
- MoveRight from $A \rightarrow B$
- MoveLeft from $B \rightarrow A$

(iv) State Transition Diagram

All parameters 1 marks, explanation 2 marks and figure is 2 marks

Answer 3-a: Uninformed (Blind) Search

- Does not use any domain-specific knowledge about the problem.
- It only knows the definition of the problem (initial state, actions, goal test).
- Explores the search space blindly until it finds a solution.
- Examples: Breadth-First Search (BFS), Depth-First Search (DFS), Uniform-Cost Search.

Informed (Heuristic) Search

- Uses additional domain knowledge (a heuristic function) to guide the search.
- A heuristic estimates how close a state is to the goal.
- Tries to explore paths that seem more promising, reducing unnecessary search.
- Examples: Greedy Best-First Search, A* Search.

Explanation 3 marks and example 1 marks each

Answer 3-b

Uninformed Search

Advantages:

- 1. Simple to understand and implement.
- 2. Works without domain knowledge.
- 3. Guarantees solution if one exists (for complete methods).
- 4. Some methods guarantee optimality (e.g., BFS, Uniform-Cost).
- 5. Provides a baseline to compare with heuristic methods.

Disadvantages:

- 1. Very inefficient for large search spaces.
- 2. Explores many unnecessary states.
- 3. High memory usage (e.g., BFS).
- 4. Time complexity can grow exponentially.
- **5.** Not practical for real-world complex problems.

Informed Search

Advantages:

- 1. Much faster and more efficient than uninformed search.
- 2. Reduces number of explored nodes.
- 3. Can give optimal solutions with admissible heuristics (e.g., A*).
- 4. More practical for real-world AI problems.
- **5.** Flexible heuristics can be refined to improve performance.

Disadvantages:

- 1. Requires a good heuristic (not always easy to design).
- 2. Poor heuristics can mislead the search.
- 3. Heuristic calculation may be expensive.

- 4. Depends on domain knowledge availability.
- 5. May still fail in very large or poorly structured search spaces.

Explanation of advantages of both approaches 3 marks and disadvantages 2 marks

Answer 4

PEAS for Part-Picking Robot

1. Performance Measure (P):

- Accuracy in picking correct parts.
- Speed of picking and placing.
- Minimizing damage or errors.
- Efficient use of energy.
- Safety in operation (no collisions with humans or machines).

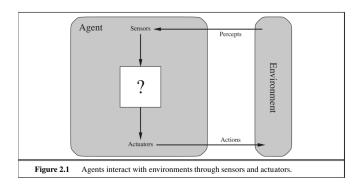
2. Environment (E):

- Factory floor / warehouse.
- Conveyor belts, bins, shelves, or pallets with parts.
- Dynamic environment (moving parts, other robots, human workers).
- Lighting and noise conditions.
- Possible obstacles in workspace.

3. Actuators (A):

- Robotic arm with gripper (vacuum or mechanical).
- Wheels / mobile base (if robot is mobile).
- Conveyor belt interface (if integrated).
- Display panel / alarm for human interaction.

4. Sensors (S):


- Camera / vision system for part recognition and location.
- Proximity sensors for obstacle detection.
- Force/torque sensors for handling delicate parts.

- Position sensors (encoders, gyroscope) for movement.
- RFID/barcode scanner (if parts are labeled).

All parameters 2 marks each and explanation 2 marks

Answer 5-a

Agent: An agent is anything that can perceive its environment through sensors and act upon that environment through actuators to achieve a goal.

Explanation of concept 2 marks and figure 2 marks

Answer 5-b

Initial State Actions Transition Model Goal Test Path Cost

Each parameter is 2 marks each.

Answer 6-:

Path found by Greedy Best-First: $S \rightarrow B \rightarrow C \rightarrow G$

Total cost: 13 (4+ 5+4)

Figure is 2 marks and correct path and cost 4 marks each