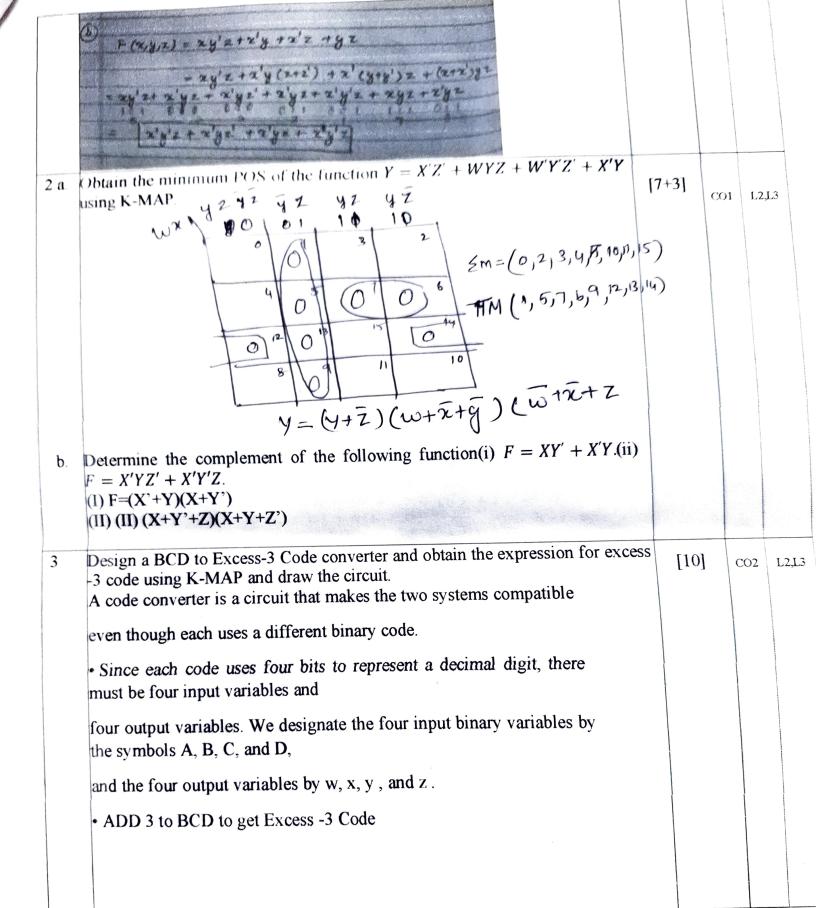
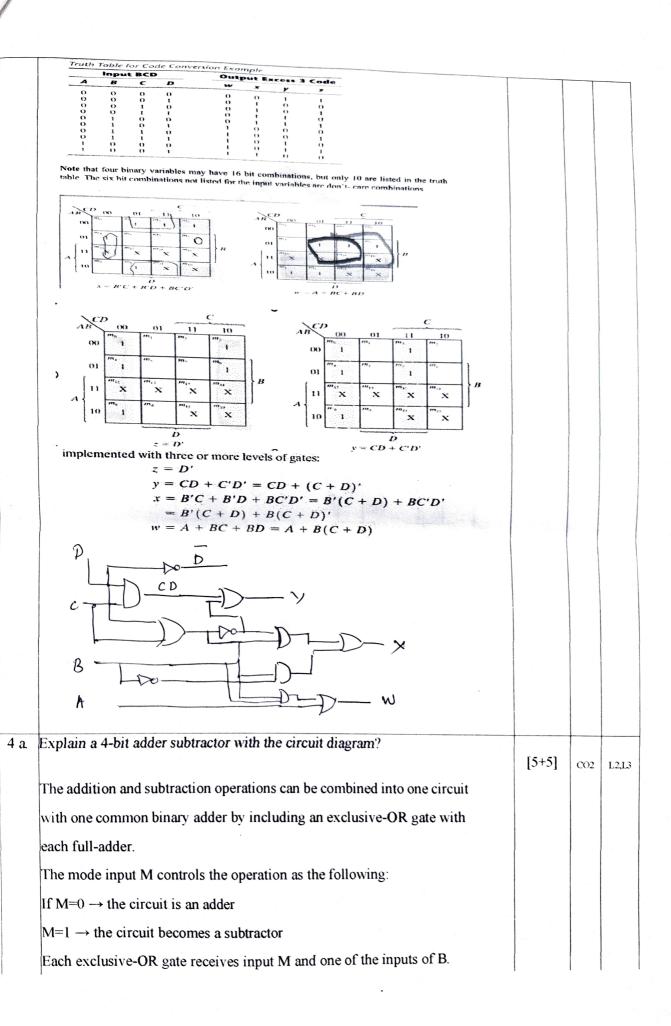


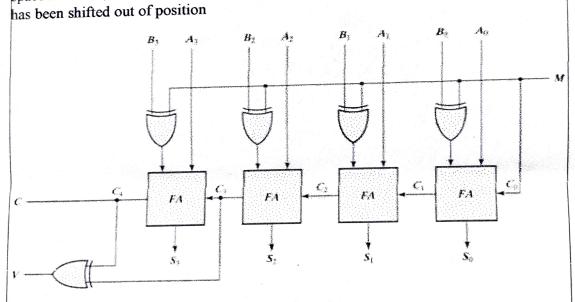
Internal Assessment Test 1 – NOV 2025


Sub:	Digital Des	ign and C	omputer (Organization		Sub Code:	BCS302	Bra	nch:	CSE		
Date:	6/11/25	Duration:	90 mins	Max Marks:	50	Sem/Sec:	3 rd seme	ester/	A,B,C		0]	BE
		Ar	nswer any FI	VE FULL Quest	tions				MA	RKS	СО	RBT
1a.	Express $F(x,y,z)=xy+x'z$ as product of maxterms(pos).											
b.	Express F(x,	y,z)=xy'z+	x'y+x'z+y	z as sum of p	rodu	cts(sop).			[5	+5]	CO1	L2,L3
2 a.	Obtain the minimum POS of the function $Y = X'Z' + WYZ + W'Y'Z' + WYZ' + WYZ'' + WYZ''' + WYZ'''' + WYZ'''' + WYZ'''' + WYZ''''' + WYZ'''''' + WYZ''''''''''''''''''''''''''''''''''''$							Z' +				
1	X/Y using K-MAP.								1	+3]		
b.	Determine th	ne compler	nent of the	e following f	unct	ion(i) F =	XY' + X'Y	(ii).			CO1	L2,L3
	$F = X \cdot Y Z \cdot +$	-XYZ.		_								
3	Design a BCD to Excess-3 Code converter and obtain the expression for							Г1	.0]			
	excess -3 cod	le using K-	MAP and	draw the circu	uit.				L1	. UJ	CO2	L2,L3
4 a.	Explain a 4-bit adder subtractor with the circuit diagram?											
	, , , , ,							ion	[5	+5]	CO2	L2,L3
-	for sum and o											
1	What is a multiplexer? Design a 4*1 mux write truth table and draw the logic											
	circuit and give the expression for output?						[6	+4]	CO2	L1,L2		
				4,11,12,13,14								
1	Explain the carry look ahead adder with expressions for carry generate and						[]	[0]				
	carry propagate and circuit diagram?											
											CO2	L2.L3

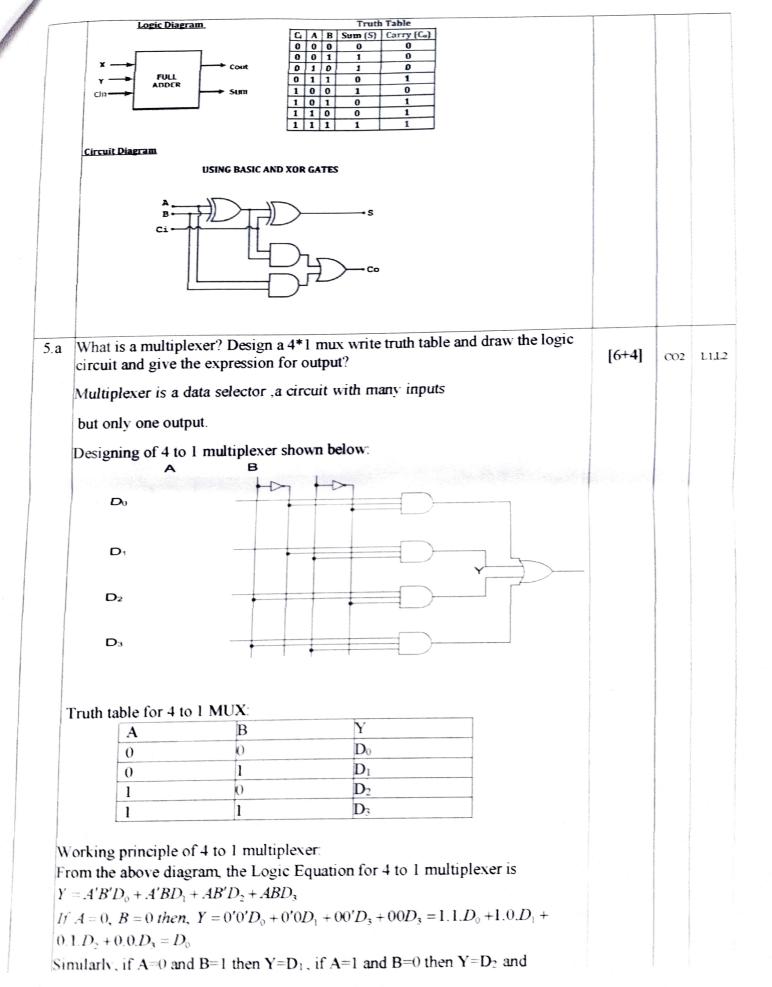

CI CCI /Anchor Teacher HOD

Internal Assessment Test 1 – NOV 2025

Sub:	Digital De	sign and C	omputer (Organization		Sub Code:	BCS302	Branch	n: CSE	f	
	Ms. Smrut	thi Nair/M	s. Lini					forms intuition may re-			
Date:	6/11/25	Duration:	90 mins	Max Marks:	50 S	em/Sec:	3 rd sem	esterA,B,	,C	0	BE
		<u>A</u> 1	nswer any Fl	VE FULL Question	ons			N	ARKS	CO	RBT
	,									novomi da il	
la.	Express $F(x,y,z)=xy+x^2z$ as product of maxterms(pos).										
	@ F(2/4	a) 2 xy 1 1	4	A STATE OF THE STA				1	[5+5]	CO1	L2,L3
	9.4	ners of the second	(182) - F(ма, Ма, Ма, Ма)	The state of the s					



value of B, the input carry is C0 = 0 and the circuit performs A + B


• When M=1, we have B XOR $1=\overline{B}$ and C0=1. The B inputs are all complemented and a 1 is added through the input carry. The circuit performs the operation A+ (the 2's

complement of B)= A -B

• The exclusive-OR with output V is for detecting an overflow. The binary adder–subtractor circuit with outputs C and V is shown in Fig. If the two binary numbers are considered to be unsigned, then the C bit detects a carry after addition or a borrow after subtraction. If the numbers are considered to be signed, then the V bit detects an overflow. If V = 0 after an addition or subtraction, then no overflow occurred and the n -bit result is correct. If V = 1, then the result of the operation contains n + 1 bits, but only the rightmost n bits of the number fit in the space available, so an overflow has occurred. The 1n + 12 th bit is the actual sign and

Implement a full adder circuit with truth table, circuit diagram and expression for sum and carry.

Implement F (A, F	C,D) = $\sum (1,3,4,11,12,13,14,15)$ using a 8:1	MUX?	
g **			
ABCD	V		
0000	10		
0001	D D II,		
0010	D D T2 8:1	<u>-</u> У	
0011	0-1-13 MUX		
0100	D II4		
0101	D - I5		
0110	0	T	
1000	D	e	
1001			
1010	D		
1001			
1100			
tilo			
1111			
Explain the carry le	ok ahead adder with expressions for carry g	generate and [10]	
carry propagate an			
	oes not settle to its final value until		CO2
from the previous		3	
stage.			3
Similarly, C 2		2	
has to wait for C		1	
and so on down to	0		
. Thus, only after the	e carry propagates all stages will the last output S ₃		
and ripples through	ar surges will the last output 53	3	
settle to their final of	orrect value.		
The problem faced	by a 4 bit ripple adder is the delay There a	re several	
	cing the carry propagation time in a paral	11 1 11	

Consider the circuit of the full adder s in If we define two new binary

Pi = Ai
$$\oplus$$
 Bi Gi = Ai Bi

The output sum and carry can respectively be expressed as

G i is called a carry generate, and it produces a carry of 1

when both Ai and Bi are 1, regardless of the input

carry Ci.

G i indicates that the data into stage i generates a carry into stage i + 1.

P i is called a carry propagate, because it determines whether a

carry into stage i will propagate into stage i + 1 (i.e., whether an

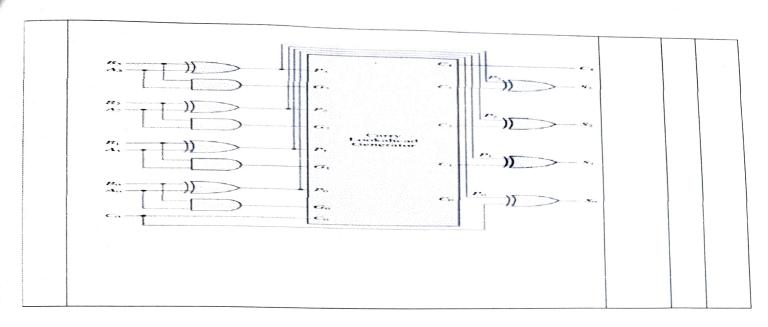
assertion of C i will propagate to an assertion of C i + 1).

We now write the Boolean functions for carry outputs

substitute the value of each C i from the previous equations:

$$GO+POCO$$

$$C2 = G1 + P1C1$$


$$= G 1 + P 1 (G0 + P 0 C 0)$$

$$=G1+P1G0+P1P0C0$$

$$C3 = G2 + P2C2$$

Since the carry of the different stages depends on only CO we are able to execute the addition in a much faster way.

Circuit of carry look ahead adder:

CI CCI /Anchor Teacher HOD