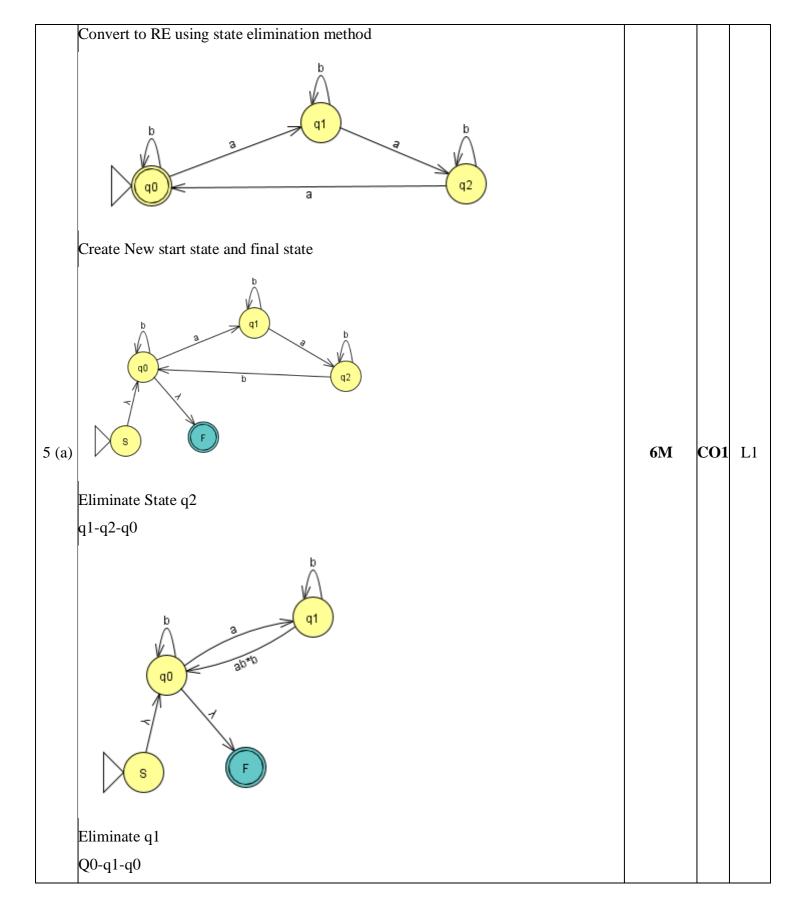


Internal Assessment Test 1 – Oct 2025


Sub:	Theory of Co	mputation				Sub Code:	BCS503	Branch:	CSE	
Date:	01.10.2025	Duration:	90 mins	Max Marks:	50	Sem/Sec:	5 A,B,C		О	BE
		Answ	er any FIV	E FULL Quest	ions			MARK	S CO	RBT
	Design a DF	A for the following the follow	owing lang	uages over $\Sigma =$	{0,1}					
	$L=\{w w \text{ is a st}$	_			-		=			
	$\mathbf{w} = 0110$ and s			cepting or rejec	cting c	configuration	using			
	extended transi	ition functio	n.							
1 (a)	Transition table State/Input			e above diagran	m.			5M	CO1	L3
	→ *q0	q0		q1						
	*q1	q0		Ø						
	Steps for com $\hat{\delta}$ (q0, $\hat{\epsilon}$) = q0 $\hat{\delta}$ (q0, $\hat{\epsilon}$ 0) = δ ($\hat{\delta}$ (q0,01) = δ ($\hat{\delta}$ (q0,011) = δ $\hat{\delta}$ (q0,0110) = δ	$\hat{\delta}$ (q0,E) ,0) $\hat{\delta}$ (q0,0) ,1)= ($\hat{\delta}$ (q0,01) , δ ($\hat{\delta}$ (q0,011	=δ(q0,0)=q =δ(q0,1)=q2 1)=δ(q1,1)=	l -qerror						
(b)	$L=\{w \text{ No two}$ = 1010 and starextended transi	consecutive	t is an accep	•	*	-		5M	CO1	L3

	Transition table is	given below for	or the above diagram.			
	State/ Input	0	1			
	→ q0	q1	q2			
	*q1 *q2	Ø q1	q2 Ø			
	$\widehat{\delta} \ (\mathbf{q}0,\mathbf{E}1) = \delta(\widehat{\delta} \ (\mathbf{q}0,\mathbf{E}1)) = \delta(\widehat{\delta} \ (\mathbf{q}0,\mathbf{E}1)) = \delta(\widehat{\delta} \ (\mathbf{q}0,\mathbf{E}1)) = \delta(\widehat{\delta} \ (\mathbf{q}0,\mathbf{E}1)) = \delta(\widehat{\delta} \ (\mathbf{E}1,\mathbf{E}1,\mathbf{E}2)) = \delta(\widehat{\delta} \ (\mathbf{E}1,\mathbf{E}2,\mathbf{E}2)) = \delta(\widehat{\delta} \ (\mathbf{E}1,\mathbf{E}2,\mathbf{E}2,\mathbf{E}2)) = \delta(\widehat{\delta} \ (\mathbf{E}1,\mathbf{E}2,\mathbf{E}2,\mathbf{E}2,\mathbf{E}2)) = \delta(\widehat{\delta} \ (\mathbf{E}1,\mathbf{E}2,E$	$0,1),0)=\delta(q2,0)$ $q0,10),1)=\delta(q0,101),0)=\delta(q0,101)$	0)=q1 (1,1)=q2			
		Deterministic I a given input, t	Finite Automaton, is a type of computational there can be multiple possible next states,			
(a)	 Q is a finite ∑ is a finite δ is the tran 	set of states. set of symbols sition function	5-tuple $(Q, \sum, \delta, q_0, F)$ where – s called the alphabets. where $\delta: Q \times \sum \rightarrow 2^Q$	5M	CO1	L
	transition can occ \mathbf{q}_0 is the init	ur to any comb	s been taken because in case of NFA, from a state, ination of Q states) where any input is processed $(q_0 \in Q)$.			
	F is a set of	final state/stat	es of Q ($F \subseteq Q$).			

	Transition table is	given below fo	or the above diag	ram.			
	State/ Input	a	b	7			
	→ q0	{q0,q1}	{q0,q5}	-			
	q1	Ø	q2	-			
	q2	Ø	q3	-]
	q3	q4	Ø	-			
	q4	q4	q4				
	q5	Ø	q6				
	q6	q3	Ø	7			
	- q ₀	1	0	q_2			
(b)	DFA Transition Ta	ıble			5M	CO1	L
	State/ Input	0	1				
	→ q0	q0	q1				
	q1	{q1, q2}	q1				
	*{q1,q2}	{q1, q2}	{q1, q2}				
	$\delta (\{q1, q2\}, 0) = \delta$	$(q1,0) \cup \delta (q2,$	$0) = \{q1, q2\}U\{$	$q2$ }={ $q1, q2$ }			
	$\delta\left(\{q1,q2\},1\right)=\delta$	$(q1,1) U \delta (q2,$	$1) = \{q1\}U\{q1,$	$\{q^2\} = \{q^1, q^2\}$			
	Find the ECLOSE	of each state for	or the given E-N	FA. Convert the following E-NFA			
t	to equivalent DFA.						
(a)	- q0	ϵ ql a	a,b		7M	CO1	L

	ECLOSE $(q0) = \{q0\}$, q1}						
	ECLOSE (q1)= {q1							
	ECLOSE $(q2) = \{q2\}$							
	DFA Transition Tab							
	State/ Input	a	b	\neg				
	→{q0, q1}	{q0, q1,q2						
	*{q0, q1,q2}	{q0, q1,q2						
	*{q1,q2}	{ q2}	{q1, q2}					
	*{q2}	{ q2}	{ q2}					
	{q1}	{ q2}	{ q1}					
	$\delta (\{q0, q1\}, a) = ECL$							
	$\delta (\{q0, q1\}, b) = ECI$	LOSE(δ(q0,t	b) U $\delta(q1,b)$) = EC	LOSE(Ø Uq1	$1) = \{ q1 \}$			
	$\delta (\{q0, q1, q2\}, a) = E$	ECLOSE(δ(c	$q_{0,a}$) U $\delta(q_{1,a})$ U δ	(q2,a)) = ECI	LOSE(q0Uq2 Uq2)			
	$= \{q0, q1, q2\}$							
	$\delta (\{q0, q1, q2\}, b) = F$	ECLOSE(δ(c	q0,b) U δ(q1,b)U δ	S(q2,b)) = EC	LOSE(Ø Uq1 Uq2)			
	$= \{q1,q2\}$							
	$\delta (\{ q1,q2 \},a) = ECL$	OSE(δ(q1,a	$\delta(q^2,a) = ECI$	LOSE(q2 Uq2	$(2) = \{q2\}$			
	$\delta (\{q1,q2\},b) = ECLC$							
		, , <u>,</u>						
İ	Write the difference	between DI	FA, NFA and E-NI	FA				
	Write the difference	between DI	FA, NFA and E-NI	FA				
	Write the difference DFA		FA, NFA and E-NI NFA	FA	E- NFA			
		1			E- NFA Zero, one or			
	DFA	I n on each	NFA			3M	CO1	L3
	DFA 1.Only one transition	I n on each	NFA Zero, one or more		Zero, one or	3M	CO1	L3
	DFA 1.Only one transition	I on each	NFA Zero, one or more		Zero, one or	3M	CO1	L3
	DFA 1.Only one transition Input	I on each	NFA Zero, one or more on same input		Zero, one or more transitions	3M	CO1	L3
	DFA 1.Only one transition Input	n on each	NFA Zero, one or more on same input		Zero, one or more transitions	3M	CO1	L3
(b)	DFA 1.Only one transition Input 2.No E-transitions	I n on each I δ	NFA Zero, one or more on same input No ε -transitions $2X\Sigma \rightarrow 2^{Q}$		Zero, one or more transitions E-transitions	3M	CO1	L3
(b)	DFA 1.Only one transition Input 2.No \mathcal{E} -transitions 3. δ :QX Σ \rightarrow Q	I n on each I δ	NFA Zero, one or more on same input No ε -transitions $2X\Sigma \rightarrow 2^{Q}$		Zero, one or more transitions E-transitions	3M	CO1	L3
(b)	DFA 1.Only one transition Input 2.No \mathcal{E} -transitions 3. δ :QX Σ \rightarrow Q	n on each δ ression. Con	NFA Zero, one or more on same input No E-transitions $:QX\sum \rightarrow 2^{Q}$ struct RE for	e transitions	Zero, one or more transitions $\epsilon\text{-transitions}$ $\delta\text{-QX}\Sigma U\{\epsilon\}{\longrightarrow}2^Q$	3M	CO1	L3
(b)	DFA 1.Only one transition Input 2.No ε-transitions 3.δ:QX∑→Q Define Regular Expr A regular expression	on each δ ression. Con	NFA Zero, one or more on same input No \mathcal{E} -transitions $: QX \Sigma \rightarrow 2^{Q}$ estruct RE for	e transitions press strings	Zero, one or more transitions $\epsilon\text{-transitions}$ $\delta\text{-QX}\Sigma U\{\epsilon\}{\longrightarrow}2^Q$ of a regular	3M	CO1	L3
(b)	DFA 1.Only one transition Input 2.No ε-transitions 3.δ:QX∑→Q Define Regular Expr A regular expression language. The const	on each δ ression. Con offers a deceants ε, Φ are	NFA Zero, one or more on same input No \mathcal{E} -transitions $: QX \Sigma \rightarrow 2^{Q}$ estruct RE for	e transitions press strings	Zero, one or more transitions $\epsilon\text{-transitions}$ $\delta\text{-QX}\Sigma U\{\epsilon\}{\longrightarrow}2^Q$ of a regular	3M 6M	CO1	
(b)	DFA 1.Only one transition Input 2.No ε-transitions 3.δ:QX∑→Q Define Regular Expr A regular expression	on each δ ression. Con offers a deceants ε, Φ are	NFA Zero, one or more on same input No \mathcal{E} -transitions $: QX \Sigma \rightarrow 2^{Q}$ estruct RE for	e transitions press strings	Zero, one or more transitions $\epsilon\text{-transitions}$ $\delta\text{-QX}\Sigma U\{\epsilon\}{\longrightarrow}2^Q$ of a regular			
(b) 4 (a)	DFA 1.Only one transition Input 2.No ε-transitions 3.δ:QX∑→Q Define Regular Expr A regular expression language. The const regular expression.	on each δ ression. Cor offers a deceants ε, Φ are	NFA Zero, one or more on same input No ε -transitions $:QX\sum \rightarrow 2^{Q}$ struct RE for clarative way to exercise regular expression	press strings on the strings of the	Zero, one or more transitions ϵ -transitions $\delta: QX \sum U(\epsilon) \rightarrow 2^Q$ of a regular bol $a \in \Sigma$ is a			
(b) 4 (a)	DFA 1.Only one transition Input 2.No ε-transitions 3.δ:QX∑→Q Define Regular Expr A regular expression language. The const	on each δ ression. Cor offers a deceants ε, Φ are	NFA Zero, one or more on same input No ε -transitions $:QX\sum \rightarrow 2^{Q}$ struct RE for clarative way to exercise regular expression	press strings on the strings of the	Zero, one or more transitions ϵ -transitions $\delta: QX \sum U(\epsilon) \rightarrow 2^Q$ of a regular bol $a \in \Sigma$ is a			

	readabilit		ion), E* (Kleene Closus	r,, () F			
		y. $L = \{a^{2n}b^{2m} \mid n, m\}$	> 0 1				
	i)		≥ 0 }				
	•••	(aa)*(bb)*		P 51.1			
	ii)		o,c} starting with a and	ending with b			
		a (a+b+c)*b					
	iii)	$L = \{a^n b^m \mid n \ge 2, r$	•				
		aaa*(ɛ+b+b+bb+bl					
	State and	prove $L = \{a^n b^m \mid n\}$	≥ m} is not regular				
))	then it mu The pump Theorem: Let L be a such that w=xyz su 1. y= 2. x 3. Fo That is, w w that can the result: Player 1: Player 2:	ist stay in a state multiplication of the string wing lemma can prove a regular language. The string wing the can always find a recommendation of the string in the language L is not recommendate. Choose a value for the string of the string in the language L is not recommendate.	Then there exists a constant L such that $ w \ge n$, we $ x \le xy^k z$ is also in L mon-empty string y not the repeating y any number uage L .	cant n (which depends of can break w into 3 string oo far from the beginn of times or deleting it	on L) ngs, ing of	CO2	I
		w = aaabbb Decide on string spl	it $ xy \le n$, $y \ne \varepsilon$				
		aa	a	bbb			
		X	y	Z			
	Dlever 1	lr = 0					
	Player 1 :		ç	hhh			
	Player 1 :	$\frac{\mathbf{k} = 0}{\mathbf{a}\mathbf{a}}$	ε y	bbb Z			

	RE from S-F	F					
	(b+ab*(ab*b))*						
	Convert to ε-NFA,	(0+10)*	*101	(a7)	4M	CO1	I
(b)	q2 1 q3) ^ (q4)	45)	q10 1 q11 A q12 Q q13 A q14 1 q15)			
	Minimize the follo	wing DF		q10 1 q11 A q12 Q q13 A q14 1 q15			
	δ	0	1	q10 1 q11 A q12 Q q13 A q14 1 q15			
	$\begin{array}{c} \delta \\ \longrightarrow A (0) \end{array}$	0 B(1)	1 E (4)	q10 1 q11 A q12 Q q13 A q14 1 q15			
	$ \begin{array}{c} \delta \\ \rightarrow A(0) \\ \hline B(1) \end{array} $	0 B(1) C(2)	1 E (4) F(5)	q10 1 q11 A q12 Q q13 A q14 1 q15)			
	$ \begin{array}{c} \delta \\ \rightarrow A(0) \\ \hline B(1) \\ *C(2) \end{array} $	0 B(1) C(2) D(3)	1 E (4) F(5) H(7)	q9 q10 1 q11 A q12 Q q13 A q14 1 q15			
	$\begin{array}{c} \delta \\ \rightarrow A(0) \\ \hline B(1) \\ *C(2) \\ \hline D(3) \end{array}$	0 B(1) C(2) D(3) E(4)	1 E (4) F(5) H(7) H(7)	q9 q10 1 q11 A q12 Q q13 A q14 1 q15			
	δ $ →A (0) $ $ B(1) $ *C(2) $ D(3) $ $ E(4)$	0 B(1) C(2) D(3) E(4) F(5)	1 E (4) F(5) H(7) H(7) I(8)	q10 1 q11 A q12 Q q13 A q14 1 q15	6M	CO2	I
	$ \begin{array}{c} \delta \\ \rightarrow A (0) \\ \hline B(1) \\ *C(2) \\ \hline D(3) \\ \hline E(4) \end{array} $	0 B(1) C(2) D(3) E(4)	1 E (4) F(5) H(7) H(7)	q10 1 q11	6M	CO2	I
	$\begin{array}{c} \delta \\ \to A \ (0) \\ \hline B (1) \\ *C(2) \\ \hline D (3) \\ \hline E (4) \\ *F (5) \\ \end{array}$	0 B(1) C(2) D(3) E(4) F(5) G(6)	1 E (4) F(5) H(7) H(7) I(8) B(1)	q9 q10 q11 A q12 Q q13 A q14 Q15	6M	CO2	I

	0 →(B,C)x							
,··									
			$1 \rightarrow (F,C)$						
	$0 \to (C, F)$		1 (T.N.						
			$1 \rightarrow (F,I)$						
(B,D),($0 \rightarrow (C, E)$	E)X							
(C,I),0	→(D,A)	, (C,I),1	→(H,E)						
(C,F),C)→(D,G)	, (C,F),1	→(H,B)						
(D,H),	0→(E,I)×	ζ							
			1→(H,B)						
(D,E),($0 \rightarrow (E,F)$	x							
(E,H),($0 \rightarrow (F,I),$	(E,H),1-	→(I,C)						
(E,G),)→(F,H)	X							
` '									
	→(G,A),	(F,I),1-	→ (B,E)						
	→(G,A),	(F,I),1—	→ (B,E)						
(F,I),0-	→(G,A), 0→(H,I):		→ (B,E)						
(F,I),0-	0→(H,I):		→ (B,E)						
(G,H),	0→(H,I)2	x	→ (B,E)						
(G,H), B *C	0→(H,I):	x x							
(F,I),0· (G,H),• B *C D	0→(H,I)2 X X	x	X	V					
(F,I),0· (G,H),• B *C D E	0→(H,I)2	x x x		X					
(F,I),0- (G,H),0- B *C D E *F	0→(H,I)2 X X	x	X X	X X	X				
(F,I),0- (G,H),0- B *C D E *F G	0→(H,I)2	x x x	X X X	X	X X	X			
(F,I),0- (G,H),0- B *C D E *F G H	0→(H,I): X	X X X X	X X	x	X	X X	X		
(G,H),	0→(H,I)2	X X X X X	X X X	X X X	X	X	X	X	
(G,H),	0→(H,I): X	X X X X	X X X	x	X			x H	
(F,I),0- (G,H),0- B *C D E *F G H	0→(H,I)2	x x x x B	X X X	X X X	X	X	X		
(F,I),0- (G,H),0- B *C D E *F G H	0→(H,I)2 X	x	x x x x x x x	X X X	X	*F	x G		

*[C,F,I]	[A,D,G]	[B,E,H]			
Define CFG. Wi	ite CFG for $L = \{ww^R w^R \}$	$\in \{0,1\}^*\}$. Define the grammar and			
derive the strings	w = 011110, w = 1001				
G = (V,T,S,P)					
V : the finite set	of variables, called non-ter	rminals			
T : the finite set of	of terminals that form the s	tring of the language being defined			
S: $S \subseteq V$, the star	t symbol				
P: finite set of p	coductions/rules that con	nsist of			
(a) Variable	– head on the LHS				
(b) → Produ	ction symbol				
(c) A string (of 0 or more terminals or	variables (V∪T)*			
S→0S0 1S1 ε			43.5	GO.	
b) $G=(V,T,S,P)$	(0, 000, 0, 101, 0		4M	CO2	
	$S \rightarrow S \rightarrow$	€ })			
w = 011110 S=>0S0					
=>01S10					
=>011S110					
=>011110					
W= 1001					
S=>1S1					
=>10S01					
=>1001					

CI CCI HOD

	Course Outcomes	Bloo ms Lev el	Mod ules cove red	P O 1	P O 2	P O 3	P O 4	P O 5	P O 6	P O 7	P O 8	P O 9	P O 1 0	P O 1 1	P O 1 2	P S O 1	P S O 2	P S O 3	P S O 4
CO1	Apply the fundamentals of automata theory to write DFA, NFA, Epsilon-NFA and conversion between them.	L1, L2, L3	1	3	2	2	-	2	-	Ī	1	1	Ī	1	-	2	2	-	3
CO2	Prove the properties of regular languages using regular expressions.	L1, L2	2	3	3	2	3	-	1	1	1	1	1	1	1	2	2	-	3
CO3	Design context-free grammars (CFGs) and pushdown automata (PDAs) for formal languages.	L1, L2, L3	3,4	3	3	2	3	2	1	1	1	1	1	1	1		2	-	3
CO4	Design Turing machines to solve the computational problems.	L1, L2, L3	5	2	3	2	3	2	1	1	1	1	ı	1	1		2	-	3
CO5	Explain the concepts of decidability and undecidability	L1, L2, L3	5	3	2	2	3	-	-	1	1	1	1	1	-	1	2	-	3

CO PO Mapping

COGNITIVE	REVISED BLOOMS TAXONOMY KEYWORDS
LEVEL	REVISED BLOOMS TAXONOMT RETWORDS
L1	List, define, tell, describe, identify, show, label, collect, examine, tabulate, quote, name, who, when, where, etc.
L2	summarize, describe, interpret, contrast, predict, associate, distinguish, estimate, differentiate, discuss, extend

L3	Apply, demonstrate, calculate, complete, illustrate, show, solve, examine, modify, relate, change, classify, experiment, discover.
L4	Analyze, separate, order, explain, connect, classify, arrange, divide, compare, select, explain, infer.
L5	Assess, decide, rank, grade, test, measure, recommend, convince, select, judge, explain, discriminate, support, conclude, compare, summarize.

PR	ROGRAM OUTCOMES (PO), PRO	GRAM	SPECIFIC OUTCOMES (PSO)	C	ORRELATION					
			21 2011 10 00 1001122 (120)		LEVELS					
PO1	Engineering knowledge	0	No Correlation							
PO2	Problem analysis	PO8	Ethics	1	Slight/Low					
PO3	Design/development of solutions	PO9	Individual and team work	2	Moderate/					
103	Design/development of solutions	109	marviadai and team work	2	Medium					
PO4	Conduct investigations of	PO10	Communication	3	Substantial/					
104	complex problems	1010	Communication	3	High					
PO5	Modern tool usage	PO11	Project management and finance							
PO6	The Engineer and society	PO12	Life-long learning							
PSO1	Develop applications using differe	nt stacks	s of web and programming technologies	es						
PSO2	Design and develop secure, paralle	el, distri	buted, networked, and digital systems							
PSO3	O3 Apply software engineering methods to design, develop, test and manage software systems.									
PSO4	SO4 Develop intelligent applications for business and industry									