USN					

Internal Assessment Test 1 – Sept. 2025

Sl.	Answer any FIVE FULL Questions	Marks	CO	RB T
	Explain briefly energy resources and its classification.	[10]	CO1	L1
	an energy resource is any material object that contains energy in abundance and can be converted into a usable form. These resources power industries, transportation, agriculture, and households, making them vital for economic growth and technological advancement.			
	Energy resources are classified based on various criteria such as origin, renewability, and commercial viability. The major classifications are:			
	1. Primary vs. Secondary Energy Resources			
	Primary energy resources are those found in nature and used directly without transformation.			
	• Examples: Coal, crude oil, natural gas, solar radiation, wind, biomass.			
	Secondary energy resources are derived from primary sources through conversion processes.			
	• Examples: Electricity, hydrogen, refined fuels.			
	This classification helps in understanding the flow of energy from natural sources to end-use applications.			
	2. Renewable and Non-Renewable Resources			
	 Renewable energy resources are naturally replenished and considered inexhaustible over human timescales. 			
	Examples: Solar, wind, geothermal, tidal, wave, biomass.			
	Characteristics: Eco-friendly, decentralized, sustainable, and increasingly cost-effective.			
	 Non-renewable energy resources are finite and deplete over time due to continuous extraction and use. 			
	Examples: Coal, petroleum, natural gas, uranium.			
	Characteristics: High energy density, established infrastructure, but environmentally harmful and unsustainable.			
	3. Commercial and Non-Commercial Energy			
	• Commercial : Bought and sold in markets (e.g., electricity, petrol).			
	• Non-Commercial : Traditionally used and not traded (e.g., firewood, animal waste).			
	4. Conventional vs. Non-Conventional Energy Resources			
	Conventional energy resources are traditional sources used extensively since the industrial revolution.			

	 Examples: Fossil fuels (coal, oil, gas), large-scale hydroelectricity. 			
	• Issues: Pollution, resource depletion, geopolitical tensions.			
	Non-conventional energy resources are newer, sustainable alternatives gaining prominence due to environmental concerns and energy scarcity.			
	• Examples: Solar, wind, tidal, wave, biomass, hydrogen, fuel cells, ocean thermal energy.			
	• Benefits: Clean, renewable, decentralized, and suitable for rural electrification.			
2	With schematic representation, explain the mechanism of absorption, scattering, beam and diffuse radiation received at earth surface. Also write the expression for tilt factor and for the beam and diffuse radiation.	[10]	CO2	L2
	 Solar radiation is absorbed by atmospheric gases (like ozone, CO₂, water vapor). This reduces the intensity of radiation reaching the surface. Scattering Caused by air molecules, dust, and aerosols. Changes the direction of solar rays, converting some beam radiation into diffuse radiation. Beam (Direct) Radiation Travels in a straight line from the sun to the Earth's surface. Most intense and useful for concentrating solar collectors. Diffuse Radiation Result of scattering; comes from all directions. Important for flat-plate collectors and shaded areas. 			
	1. Tilt Factor (Rb)			
	Tilt factor accounts for the orientation of a surface relative to the sun.			
	$R_b = rac{\cos heta}{\cos heta_z}$			
	Where:			
	• θ = angle of incidence on the tilted surface			
	• θ_z = angle of incidence on a horizontal surface (solar zenith angle)			
	2. Beam Radiation on Tilted Surface (I_bT)			
	$I_{bT} = I_b \cdot R_b$			
	Where:			
	Ib = beam radiation on a horizontal surface			
	• R_b = tilt factor			

	3. Diffuse Radiation on Tilted Surface (I_dT)			
	Assuming isotropic sky model:			
	$I_{dT} = I_d \cdot \left(\frac{1 + \cos \beta}{2}\right)$			
	Where:			
	I_d = diffuse radiation on a horizontal surface			
	• β = tilt angle of the surface			
3	Write short notes on collector efficiency factor and collector heat removal factor.	[10]	CO2	L1
	The collector efficiency factor F' represents the effectiveness of a solar collector in transferring absorbed solar energy from the absorber surface to the working fluid. It accounts for the thermal resistance between the absorber plate and the fluid, including conduction through the absorber and convection to the fluid. Value Range: Typically ranges between 0 and 1. A value close to 1 indicates minimal thermal losses and high efficiency. Influencing Factors: • Thermal conductivity of absorber material • Flow channel geometry • Heat transfer coefficient between absorber and fluid			
	Collector heat removal factor:			
	Definition: The heat removal factor F _R quantifies the actual heat collected by the fluid			
	compared to the maximum possible heat if the entire absorber were at fluid inlet temperature. • Expression:			
	$F_R = rac{ ext{Actual useful heat gain}}{ ext{Maximum possible heat gain}}$			
	 Significance: It combines the effects of collector efficiency factor and fluid flow rate, and is used in the Hottel-Whillier-Bliss equation for flat-plate collectors. 			
	Influencing Factors:			
	Flow rate of the fluid			
	Collector area			
	Absorber plate properties			
	Temperature difference between fluid and ambient			
	I	I	<u> </u>	<u> </u>

Sl.	Answer any FIVE FULL Questions	Mar ks	CO	RBT	
-----	--------------------------------	-----------	----	-----	--

Subject/Code: Non-conventional Energy Resources /BME755D								
Date: 30/9/2025 Duration: 90 mins Max. Marks: 50 Semester: 07 Branch: ECE						Έ		
Explain the wo	Explain the working principle and characteristics of photovoltaic conversion.				CO2	L1		
	ption Sunlight consisce of a solar cell, theyctor.			S				
	itation The energy from the valer on-hole pairs.			,				
and n-type sem	Creation A p-n junc niconductors) creates a s toward the n-side ar	an internal electric	c field that					
	When the cell is com- electrons generates dir							
	It The generated electries, or fed into the gri	•	immediately,					

Characteristics of Photovoltaic Conversion

1. Efficiency

- Defined as the ratio of electrical output to incident solar energy.
- Influenced by material properties, temperature, and cell design.
- Typical commercial solar cells have efficiencies between 15–22%.

2. I-V Characteristics

- The **current-voltage (I-V) curve** describes the performance of a solar cell.
- Key points include:
 - Short-circuit current (Isc): Maximum current when voltage is zero.
 - Open-circuit voltage (Voc): Maximum voltage when current is zero.
 - o **Maximum power point (MPP)**: Optimal operating point for maximum energy output.

3. Fill Factor (FF)

$$FF = \frac{V_{mp} \times I_{mp}}{V_{oc} \times I_{sc}}$$

- · Indicates the quality of the solar cell.
- Higher FF means better performance.

4. Temperature Sensitivity

- Efficiency decreases with rising temperature.
- Cooling mechanisms or material choices can mitigate this effect.

5. Material Dependence

- Common materials: Silicon (monocrystalline, polycrystalline), thin films (CdTe, CIGS), organic PV.
- Each has unique cost, efficiency, and durability profiles.

6. Modularity and Scalability

- PV systems can be scaled from small devices (solar lanterns) to large solar farms.
- Easily integrated into buildings, vehicles, and remote installations.

DC bus voltage. The solar cells to be used are rated for 0.1 W peak output at 0.4V. Assuming that there are no assembly losses, define the array. Solution Maximum power rating of each cell $(P_C) = 0.1$ W Let N_T is the total number of cells. Total output power of array $(P_{MAX}) = 100$ W Hence, $N_T = P_{MAX}/P_C = 100/0.1 = 1,000$ cells Further, number of cells in series = N_S = array output voltage $(V_a)/V_{MP}$ =120/0.4 = 300 cells Since $N_T = N_S \times N_P$ $N_P = 1,000/300 = 3.33$ parallel strings Therefore, a decision must be taken to use either 3 or 4 parallel strings. With $N_P = 4$, $N_T = 1,200$ and array power = $0.1 \times 1,200 = 120$ W With $N_P = 3$, $N_T = 900$ and array power = $0.1 \times 90 = 90$ W	5	Explain the working of Pyranometer with the help of relevant Sketch	[10]	CO2	L1
 Pyranometer are classified as 'A', 'B' or 'C' based on specifications such as response time, directional response, temperature response, tilt response and calibration method. Based on the Seebeck- or thermoelectric effect, a pyranometer is operated based on the measurement of a temperature difference between a clear surface and a dark surface. The main components of pyranometer are a thermopile, a glass dome, and an occultating disc. Outer dome made from a hemisphere of optical-quality glass. Inner dome made from a smaller hemisphere of optical quality glass. Back carbon disk (illuminated by the Sun) absorbs a broad range of wavelengths of solar radiation and acts as the sensing element. Control disk (not illuminated by the Sun) acts as a comparison. Thermopile temperature sensor compares the temperature rise of the two disks. Output lead (usually about 10m or 30ft long). Replaceable slike gel cartridge absorbs moisture to prevent dew forming inside on cold nights. Adjustable screw legs let you level the pyranometer. A Solar cell array is required to deliver 100 W peak output at 120V DC bus voltage. The solar cells to be used are rated for 0.1 W peak output at 0.4V. Assuming that there are no assembly losses, define the array. Solution Maximum power rating of each cell (P_C) = 0.1 W Let N_T is the total number of cells. Total output power of array (P_{MAX}) = 100 W Hence, N_T = P_{MAX}/P_C = 100/0.1 = 1,000 cells Further, number of cells in series = N_S = array output voltage (V_a)VV_{MP} = 120/0.4 = 300 cells Since N_T = N_S × N_P N_P = 1,000/300 = 3.33 parallel strings Therefore, a decision must be taken to use either 3 or 4 parallel strings. With N_P = 4, N_T = 1,200 and array power = 0.1 × 1,200 = 120W With N_P = 3, N_T = 900 and array power = 0.1 × 1.90 = 90 W Find the Sunrise and Sunset time and length of the day at		Pyranometer			
response time, directional response, temperature response, till response and calibration method. *Based on the Seebeck- or thermoelectric effect, a pyranometer is operated based on the measurement of a temperature difference between a clear surface and a dark surface. *The main components of pyranometer are a thermopile, a glass dome, and an occultating disc. *Outer dome made from a hemisphere of optical-quality glass. *Inner dome made from a smaller hemisphere of optical glass. *Back carbon disk (illuminated by the Sun) absorbs a broad range of wavelengths of solar radiation and acts as the sensing element. *Control disk (not illuminated by the Sun) acts as a comparison. *Thermopile temperature sensor compares the temperature rise of the two disks. *Output lead (usually about 10m or 30ft long). *Replaceable silica gel cartridge absorbs moisture to prevent dew forming inside on cold nights. *Adjustable sercew legs let you level the pyranometer. *A Solar cell array is required to deliver 100 W peak output at 120V DC bus voltage. The solar cells to be used are rated for 0.1 W peak output at 0.4V. Assuming that there are no assembly losses, define the array. **Solution** *Solution** *Solution** *Maximum power rating of each cell (P _C) = 0.1 W Let N _T is the total number of cells. Total output power of array (P _{MAX}) = 100 W Hence, N _T = P _{MAX} /P _C = 100/0.1 = 1,000 cells *Further, number of cells in series = N _S = array output voltage (V _a)/V _{MP} = 120/0.4 = 300 cells *Since N _T = N _S × N _P N _P = 1,000/300 = 3.33 parallel strings Therefore, a decision must be taken to use either 3 or 4 parallel strings. With N _P = 4, N _T = 1,200 and array power = 0.1 × 1,200 = 120W With N _P = 4, N _T = 1,200 and array power = 0.1 × 1,200 = 120W With N _P = 3, N _T = 900 and array power = 0.1 × 1,200 = 100 W *Find the Sunrise and Sunset time and length of the day at CMRIT on 28th July 2019, Take the latitude and Longitude of CMRIT as					
based on the measurement of a temperature difference between a clear surface and a dark surface. • The main components of pyranometer are a thermopile, a glass dome, and an occultating disc. • Outer dome made from a hemisphere of optical-quality glass. • Inner dome made from a smaller hemisphere of optical quality glass. • Black carbon disk (illuminated by the Sun) absorbs a broad range of wavelengths of solar radiation and acts as the sensing element. • Control disk (not illuminated by the Sun) acts as a comparison. • Thermopile temperature sensor compares the temperature rise of the two disks. • Output lead (usually about 10m or 30ft long). • Replaceable silica gel cartridge absorbs moisture to prevent dew forming inside on cold nights. • Adjustable screw legs let you level the pyranometer. • A Solar cell array is required to deliver 100 W peak output at 120V DC bus voltage. The solar cells to be used are rated for 0.1 W peak output at 0.4V. Assuming that there are no assembly losses, define the array. • Solution Maximum power rating of each cell (P_C) = 0.1 W Let N_T is the total number of cells. Total output power of array (P_{MAX}) = 100 W Hence, $N_T = P_{MAX}/P_C = 100/0.1=1,000$ cells • Further, number of cells in series = N_S = array output voltage (V_a)/ V_{MP} = 120/0.4 = 300 cells • Since $N_T = N_S \times N_F$ $N_F = 1,000$ and array power = 0.1 × 1,200 = 120W With N_F = 3, N_T = 900 and array power = 0.1 × 1,200 = 120W With N_F = 3, N_T = 900 and array power = 0.1 × 1,200 = 120W With N_F = 3, N_T = 900 and array power = 0.1 × 90 = 90 W		response time, directional response, temperature response, tilt response and			
occultating disc. Outer dome made from a hemisphere of optical-quality glass. Inner dome made from a smaller hemisphere of optical glass. Inner dome made from a smaller hemisphere of optical glass. Inner dome made from a smaller hemisphere of optical glass. Inner dome made from a smaller hemisphere of optical glass. Inner dome made from a smaller hemisphere of optical glass. Inner dome made from a smaller hemisphere of optical glass. Inner dome made from a smaller hemisphere of optical glass. Inner dome made from a smaller hemisphere of optical glass. Inner dome made from a smaller hemisphere of optical glass. Inner dome made from a hemisphere of optical glass. Inner dome made from a smaller hemisphere of optical glass. Inner dome made from a smaller hemisphere of optical glass. Inner dome made from a smaller hemisphere of optical glass. Inner dome made from a smaller hemisphere of optical glass. Inner dome made from a smaller hemisphere of optical glass. Inner dome made from a smaller hemisphere of optical glass. Inner dome made from a smaller hemisphere of optical glass. Inner dome made from a smaller hemisphere of solar glass. Inner dome made from a smaller hemisphere of optical glass. Inner dome made from a smaller hemisphere of optical glass. Inner dome made from a smaller hemisphere of solar glass. Inner dome made from a smaller hemisphere of solar glass. Inner dome made from a smaller hemisphere of solar glass. Inner dome made from a smaller hemisphere of solar glass. Inner dome made from a smaller hemisphere of solar glass. Inner dome made for a solar glass. Inner dome made from a smaller hemisphere of solar glass. Inner dome made for a solar glass. Inner dome made for old glass. Inner dome		based on the measurement of a temperature difference between a clear			
 quality glass. Inner dome made from a smaller hemisphere of optical glass. Black carbon disk (illuminated by the Sun) absorbs a broad range of wavelengths of solar radiation and acts as the sensing element. Control disk (not illuminated by the Sun) acts as a comparison. Thermopile temperature sensor compares the temperature rise of the two disks. Output lead (usually about 10m or 30ft long). Replaceable silica gel cartridge absorbs moisture to prevent dew forming inside on cold nights. Adjustable screw legs let you level the pyranometer. A Solar cell array is required to deliver 100 W peak output at 120V DC bus voltage. The solar cells to be used are rated for 0.1 W peak output at 0.4V. Assuming that there are no assembly losses, define the array. Solution Maximum power rating of each cell (P_C) = 0.1 W Let N_T is the total number of cells. Total output power of array (P_{MAX}) = 100 W Hence, N_T = P_{MAX}/P_C = 100/0.1= 1,000 cells Further, number of cells in series = N_S = array output voltage (V_a)/V_{MP} = 120/0.4 = 300 cells Since N_T = N_S × N_P N_P = 1,000/300 = 3.33 parallel strings Therefore, a decision must be taken to use either 3 or 4 parallel strings. With N_P = 4, N_T = 1,200 and array power = 0.1 × 1,200 = 120W With N_P = 3, N_T = 900 and array power = 0.1 × 90 = 90 W Find the Sunrise and Sunset time and length of the day at CMRIT on 28th July 2019, Take the latitude and Longitude of CMRIT as 					
optical glass. Black carbon disk (illuminated by the Sun) absorbs a broad range of wavelengths of solar radiation and acts as the sensing element. Control disk (not illuminated by the Sun) acts as a comparison. Thermopile temperature sensor compares the temperature rise of the two disks. Output lead (usually about 10m or 30ft long). Replaceable silica gel cartridge absorbs moisture to prevent dew forming inside on cold nights. Adjustable serew legs let you level the pyranometer. A Solar cell array is required to deliver 100 W peak output at 120V DC bus voltage. The solar cells to be used are rated for 0.1 W peak output at 0.4V. Assuming that there are no assembly losses, define the array. Solution Maximum power rating of each cell (P _C) = 0.1 W Let N _T is the total number of cells. Total output power of array (P _{MAX}) = 100 W Hence, N _T = P _{MAX} /P _C = 100/0.1 = 1,000 cells Further, number of cells in series = N _S = array output voltage (V _a)/V _{MP} = 120/0.4 = 300 cells Since N _T = N _S × N _P N _P = 1,000/300 = 3.33 parallel strings Therefore, a decision must be taken to use either 3 or 4 parallel strings. With N _P = 4, N _T = 1,200 and array power = 0.1 × 1,200 = 120W With N _P = 3, N _T = 900 and array power = 0.1 × 1,200 = 120W With N _P = 3, N _T = 900 and array power = 0.1 × 90 = 90 W		quality glass.			
absorbs a broad range of wavelengths of solar radiation and acts as the sensing element. • Control disk (not illuminated by the Sun) acts as a comparison. • Thermopile temperature sensor compares the temperature rise of the two disks. • Output lead (usually about 10m or 30ft long). • Replaceable silica gel cartridge absorbs moisture to prevent dew forming inside on cold nights. • Adjustable serew legs let you level the pyranometer. 6 A Solar cell array is required to deliver 100 W peak output at 120 V DC bus voltage. The solar cells to be used are rated for 0.1 W peak output at 0.4 V. Assuming that there are no assembly losses, define the array. Solution Maximum power rating of each cell (P_C) = 0.1 W Let N_T is the total number of cells. Total output power of array (P_{MAX}) = 100 W Hence, $N_T = P_{MAX}/P_C = 100/0.1 = 1,000$ cells Further, number of cells in series = N_S = array output voltage (V_a)/ V_{MP} =120/0.4 = 300 cells Since $N_T = N_S \times N_P$ $N_P = 1,000/300 = 3.33$ parallel strings Therefore, a decision must be taken to use either 3 or 4 parallel strings. With $N_P = 4$, $N_T = 1,200$ and array power = 0.1 × 1,200 = 120W With $N_P = 3$, $N_T = 900$ and array power = 0.1 × 90 = 90 W 7 Find the Sunrise and Sunset time and length of the day at CMRIT on 28th July 2019, Take the latitude and Longitude of CMRIT as					
comparison. Thermopile temperature sensor compares the temperature rise of the two disks. Output lead (usually about 10m or 30ft long). Replaceable silica gel cartridge absorbs moisture to prevent dew forming inside on cold nights. A Solar cell array is required to deliver 100 W peak output at 120V DC bus voltage. The solar cells to be used are rated for 0.1 W peak output at 0.4V. Assuming that there are no assembly losses, define the array. Solution Maximum power rating of each cell (P_C) = 0.1 W Let N_T is the total number of cells. Total output power of array (P_{MAX}) = 100 W Hence, $N_T = P_{MAX}/P_C = 100/0.1 = 1,000$ cells Further, number of cells in series = N_S = array output voltage (V_a)/ V_{MP} =120/0.4 = 300 cells Since $N_T = N_S \times N_P$ $N_P = 1,000/300 = 3.33$ parallel strings Therefore, a decision must be taken to use either 3 or 4 parallel strings. With $N_P = 4$, $N_T = 1,200$ and array power = 0.1 × 1,200 = 120W With $N_P = 3$, $N_T = 900$ and array power = 0.1 × 90 = 90 W 7 Find the Sunrise and Sunset time and length of the day at CMRIT on 28th July 2019, Take the latitude and Longitude of CMRIT as		absorbs a broad range of wavelengths of solar			
• Thermopile temperature sensor compares the temperature rise of the two disks. • Output lead (usually about 10m or 30ft long). • Replaceable silica gel cartridge absorbs moisture to prevent dew forming inside on cold nights. • Adjustable screw legs let you level the pyranometer. 6 A Solar cell array is required to deliver 100 W peak output at 120V DC bus voltage. The solar cells to be used are rated for 0.1 W peak output at 0.4V. Assuming that there are no assembly losses, define the array. Solution Maximum power rating of each cell (P_C) = 0.1 W Let N_T is the total number of cells. Total output power of array (P_{MAX}) = 100 W Hence, $N_T = P_{MAX}/P_C = 100/0.1 = 1,000$ cells Further, number of cells in series = N_S = array output voltage (V_a)/ V_{MP} =120/0.4 = 300 cells Since $N_T = N_S \times N_P$ $N_P = 1,000/300 = 3.33$ parallel strings Therefore, a decision must be taken to use either 3 or 4 parallel strings. With $N_P = 4$, $N_T = 1,200$ and array power = 0.1 × 1,200 = 120W With $N_P = 4$, $N_T = 1,200$ and array power = 0.1 × 1,200 = 120W With $N_P = 3$, $N_T = 900$ and array power = 0.1 × 90 = 90 W 7 Find the Sunrise and Sunset time and length of the day at CMRIT on 28th July 2019, Take the latitude and Longitude of CMRIT as					
 Replaceable silica gel cartridge absorbs moisture to prevent dew forming inside on cold nights. Adjustable screw legs let you level the pyranometer. A Solar cell array is required to deliver 100 W peak output at 120V DC bus voltage. The solar cells to be used are rated for 0.1 W peak output at 0.4V. Assuming that there are no assembly losses, define the array. Solution Maximum power rating of each cell (P_C) = 0.1 W Let N_T is the total number of cells. Total output power of array (P_{MAX}) = 100 W Hence, N_T = P_{MAX}/P_C = 100/0.1= 1,000 cells Further, number of cells in series = N_S = array output voltage (V_a)/V_{MP} =120/0.4 = 300 cells Since N_T = N_S × N_P N_P = 1,000/300 = 3.33 parallel strings Therefore, a decision must be taken to use either 3 or 4 parallel strings. With N_P = 4, N_T = 1,200 and array power = 0.1 × 1,200 = 120W With N_P = 3, N_T = 900 and array power = 0.1 × 90 = 90 W Find the Sunrise and Sunset time and length of the day at CMRIT on 28th July 2019, Take the latitude and Longitude of CMRIT as 		Thermopile temperature sensor compares the			
to prevent dew forming inside on cold nights. * Adjustable screw legs let you level the pyranometer. A Solar cell array is required to deliver 100 W peak output at 120V DC bus voltage. The solar cells to be used are rated for 0.1 W peak output at 0.4V. Assuming that there are no assembly losses, define the array. Solution Maximum power rating of each cell (P_C) = 0.1 W Let N_T is the total number of cells. Total output power of array (P_{MAX}) = 100 W Hence, $N_T = P_{MAX}/P_C = 100/0.1 = 1,000$ cells Further, number of cells in series = N_S = array output voltage (V_a)/ V_{MP} =120/0.4 = 300 cells Since $N_T = N_S \times N_P$ $N_P = 1,000/300 = 3.33$ parallel strings Therefore, a decision must be taken to use either 3 or 4 parallel strings. With $N_P = 4$, $N_T = 1,200$ and array power = 0.1 × 1,200 = 120W With $N_P = 3$, $N_T = 900$ and array power = 0.1 × 90 = 90 W 7 Find the Sunrise and Sunset time and length of the day at CMRIT on 28th July 2019, Take the latitude and Longitude of CMRIT as		7 8			
A Solar cell array is required to deliver 100 W peak output at 120V DC bus voltage. The solar cells to be used are rated for 0.1 W peak output at 0.4V. Assuming that there are no assembly losses, define the array. Solution Maximum power rating of each cell (P_C) = 0.1 W Let N_T is the total number of cells. Total output power of array (P_{MAX}) = 100 W Hence, $N_T = P_{MAX}/P_C = 100/0.1 = 1,000$ cells Further, number of cells in series = N_S = array output voltage (V_a)/ V_{MP} =120/0.4 = 300 cells Since $N_T = N_S \times N_P$ $N_P = 1,000/300 = 3.33$ parallel strings Therefore, a decision must be taken to use either 3 or 4 parallel strings. With $N_P = 4$, $N_T = 1,200$ and array power = 0.1 × 1,200 = 120W With $N_P = 3$, $N_T = 900$ and array power = 0.1 × 90 = 90 W 7 Find the Sunrise and Sunset time and length of the day at CMRIT on 28th July 2019, Take the latitude and Longitude of CMRIT as					
DC bus voltage. The solar cells to be used are rated for 0.1 W peak output at 0.4V. Assuming that there are no assembly losses, define the array. Solution Maximum power rating of each cell (P_C) = 0.1 W Let N_T is the total number of cells. Total output power of array (P_{MAX}) = 100 W Hence, $N_T = P_{MAX}/P_C = 100/0.1 = 1,000$ cells Further, number of cells in series = N_S = array output voltage (V_a)/ V_{MP} =120/0.4 = 300 cells Since $N_T = N_S \times N_P$ $N_P = 1,000/300 = 3.33$ parallel strings Therefore, a decision must be taken to use either 3 or 4 parallel strings. With $N_P = 4$, $N_T = 1,200$ and array power = 0.1 × 1,200 = 120W With $N_P = 3$, $N_T = 900$ and array power = 0.1 × 90 = 90 W 7 Find the Sunrise and Sunset time and length of the day at CMRIT on 28th July 2019, Take the latitude and Longitude of CMRIT as					
Let $N_{\rm T}$ is the total number of cells. Total output power of array $(P_{\rm MAX}) = 100~{\rm W}$ Hence, $N_{\rm T} = P_{\rm MAX}/P_{\rm C} = 100/0.1 = 1,000~{\rm cells}$ Further, number of cells in series = $N_{\rm S}$ = array output voltage $(V_{\rm a})/V_{\rm MP}$ $= 120/0.4 = 300~{\rm cells}$ Since $N_{\rm T} = N_{\rm S} \times N_{\rm P}$ $N_{\rm P} = 1,000/300 = 3.33~{\rm parallel~strings}$ Therefore, a decision must be taken to use either 3 or 4 parallel strings. With $N_{\rm P} = 4$, $N_{\rm T} = 1,200~{\rm and~array~power} = 0.1 \times 1,200 = 120{\rm W}$ With $N_{\rm P} = 3$, $N_{\rm T} = 900~{\rm and~array~power} = 0.1 \times 90 = 90~{\rm W}$ 7 Find the Sunrise and Sunset time and length of the day at CMRIT on 28th July 2019, Take the latitude and Longitude of CMRIT as	6	DC bus voltage. The solar cells to be used are rated for 0.1 W peak output at 0.4V. Assuming that there are no assembly losses, define the	[10]	CO2	L3
Hence, $N_T = P_{\text{MAX}}/P_{\text{C}} = 100/0.1 = 1,000 \text{ cells}$ Further, number of cells in series = N_{S} = array output voltage (V_{a})/ V_{MP} =120/0.4 = 300 cells Since $N_T = N_{\text{S}} \times N_{\text{P}}$ $N_{\text{P}} = 1,000/300 = 3.33 \text{ parallel strings}$ Therefore, a decision must be taken to use either 3 or 4 parallel strings. With $N_{\text{P}} = 4$, $N_{\text{T}} = 1,200$ and array power = $0.1 \times 1,200 = 120 \text{W}$ With $N_{\text{P}} = 3$, $N_{\text{T}} = 900$ and array power = $0.1 \times 90 = 90 \text{ W}$ 7 Find the Sunrise and Sunset time and length of the day at CMRIT on 28th July 2019, Take the latitude and Longitude of CMRIT as		Solution Maximum power rating of each cell $(P_C) = 0.1 \text{ W}$			
Since $N_T = N_S \times N_P$ $N_P = 1,000/300 = 3.33$ parallel strings Therefore, a decision must be taken to use either 3 or 4 parallel strings. With $N_P = 4$, $N_T = 1,200$ and array power = $0.1 \times 1,200 = 120$ W With $N_P = 3$, $N_T = 900$ and array power = $0.1 \times 90 = 90$ W 7 Find the Sunrise and Sunset time and length of the day at CMRIT on 28th July 2019, Take the latitude and Longitude of CMRIT as		Hence, $N_{\rm T} = P_{\rm MAX}/P_{\rm C} = 100/0.1 = 1,000$ cells			
$N_{\rm P}=1,000/300=3.33$ parallel strings Therefore, a decision must be taken to use either 3 or 4 parallel strings. With $N_{\rm P}=4$, $N_{\rm T}=1,200$ and array power = $0.1\times1,200=120{\rm W}$ With $N_{\rm P}=3$, $N_{\rm T}=900$ and array power = $0.1\times90=90{\rm W}$		=120/0.4 = 300 cells			
28th July 2019, Take the latitude and Longitude of CMRIT as		$N_{\rm P}=1,000/300=3.33$ parallel strings Therefore, a decision must be taken to use either 3 or 4 parallel strings. With $N_{\rm P}=4$, $N_{\rm T}=1,200$ and array power $=0.1\times1,200=120{\rm W}$			
	7	28th July 2019, Take the latitude and Longitude of CMRIT as	[10]	CO2	L3

```
Local longitude $38.N 12.9667°N

Lantual (10) = 12.9838°N 12.9667°N

Longitude = 19.1833°E 77.7115°E

Longitude = 19.1833°E 77.7115°
```

```
cosws = -tan stan p

ws = cos -1 (-tan stan p)

ws = cos -1 (-tan 18.97) tan (12.9833)

ws = cos -1 (-0.07925)

= 94.55°

p3 Daylingth (Smax)

Smax = 2 x ws (In hows)

= 2 x 94.55 = 12.606 hows
```

Step:5 Sciences time + [4182.5 - 77-7115" + (-6-12)] Solar time 12-0:5max = 5.698 5hrs [0.698x60 = 42minures] 5hes 42minutes 5hrs 42mins+[4(82.5-77.115"+[-6.12)] 5 hrs 42 minus +[15,42 minutes] 5 hrs 57 minutes Am Surset time 0.5 (max) 0.5 x 12.604 = 6.308 take 0.308x60 - 18.48 6 hrs 18 minutes + < 15.42 minutes =6:33pm.