
CMR INSTITUTE OF TECHNOLOGY

Internal Assessment Test - I

4. Draw T model and π model of (i)base biased amplifier (ii)Voltage divider bias amplifier	3. Explain Common collector amplifier with the help of circuit diagram gain.	Determine the collector-emitter voltage, collector current, and collector voltage in the given figure. 2. Also, draw the load line and find the Qpoint.	(a) Discuss Emitter feedback bias biasing circulation (b) Define AC Beta and AC Emitter resistance		al a	Date: 5/11/2025	Sub: Electronic Principles and Circuits
del of (i)base biased an	tor amplifier with the h		Discuss Emitter feedback bias biasing circuits Define AC Beta and AC Emitter resistance.		Answer A	Duration: 90 mins	and Circuits
nplifier (ii)Voltage	elp of circuit diagra	22 H2 2018904	its.		Answer Any FIVE FULL Questions	Max Marks: 50	
divider bias amplifi	m and derive voltage	2			estions	Sem: 3rd	
				P	7	Branch:	Code;
[5+5]	[10]	[10]	[7+3]	Marks	1		
CO1	CO1	COI	CO1	OBE CO F	,	ECE	BEC303
L2	1.2	5	L1	E RBT			ω

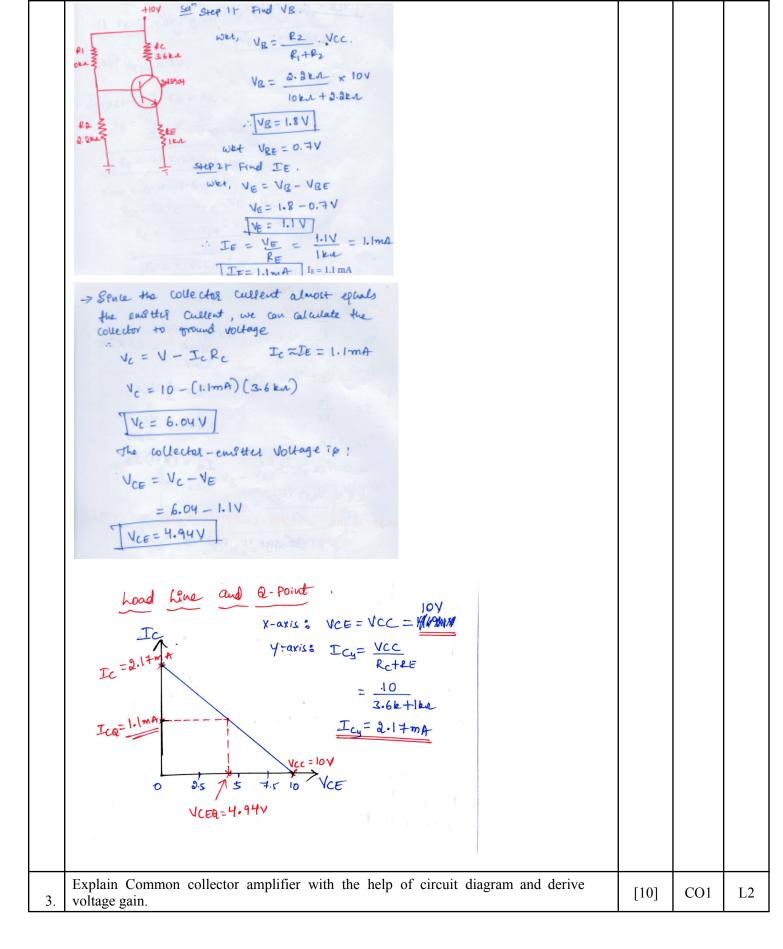
Explain the operation of inverting Schmith Trigger circuit with necessary [10] CO2 L2 diagrams. (a) Explain the operation of Hartley Oscillator. (b) Find the output voltage Vo in the following OPAMP circuit. (c) Find the output voltage Vo in the following OPAMP circuit. (d) Find the output voltage Vo in the following OPAMP circuit. (e) Find the output voltage Vo in the following OPAMP circuit. (f) Explain Barkhausen Criteria for sustained oscillations. (g) Explain Barkhausen Criteria for sustained oscillations. (h) Explain Barkhausen Criteria for sustained oscillations. (h) Explain Barkhausen Criteria for sustained oscillations.			- T	and of the second
Explain the operation of inverting Schmith Trigger circuit with necessary [10] CO2 diagrams. (a) Explain the operation of Hartley Oscillator. (b) Find the output voltage Vo in the following OPAMP circuit. (b) Find the output voltage Vo in the following OPAMP circuit. (c) Explain the operation of Wein Bridge oscillator with necessary equations. (b) Explain Barkhausen Criteria for sustained oscillations.	L2	L3	L3	STORY OF THE PROPERTY OF THE P
Explain the operation of inverting Schmith Trigger circuit with necessary diagrams. (a) Explain the operation of Hartley Oscillator. (b) Find the output voltage Vo in the following OPAMP circuit. (b) Find the output voltage Vo in the following OPAMP circuit. (b) Find the output voltage Vo in the following OPAMP circuit. (c) Find the output voltage Vo in the following OPAMP circuit. (d) Explain the operation of Wein Bridge oscillator with necessary equations. (e) Explain Barkhausen Criteria for sustained oscillations. (b) Explain Barkhausen Criteria for sustained oscillations.	200	C02	C02	F
	[10]	[6+4]	[7+3]	
		(a) Explain the operation of Hartley Oscillator. (b) Find the output voltage Vo in the following OPAMP circuit. (c) Find the output voltage Vo in the following OPAMP circuit. (d) Find the output voltage Vo in the following OPAMP circuit. (e) Find the output voltage Vo in the following OPAMP circuit. (e) Find the output voltage Vo in the following OPAMP circuit. (f) Part Part Part Part Part Part Part Part		

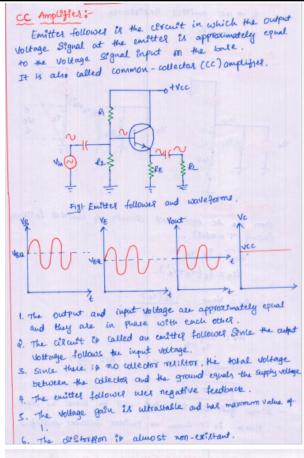
HZNI					l I
UBIN					l I

Internal Assessment Test - I

Sub:	Electronic Principles	s and Circuits						Code:			BEC30	3
Date:	5/11/2025	Duration:	90 mins	Max Marks:	50	Sem:	3rd	Branch	1:		ECE	
			Answer A	Any FIVE FULI	. Questi	ions						
									Mar	ks	OB	
	(a) Discuss Emitter fo	edback bias l	niasing cire	ouite							CO	RBT
1.	Rase-bias Rase-bias Rase-bias For the first attempemental - feed	Pack bias Circuit 1- VCC -> 8- RC VCC -> 8- RC VCC -> 8- RC VCC -> 8- A Port at Stass FVCC + Au add FVCC + Au Au Au Au Au Au Au Au Au Au	ince the ixed, the ories who waris of committed to balic To luce ling VB ross RB	base cultons collector en the culto es. It moves a line with replacement use change nonly used time.	and				[5+.	5]	CO1	L1

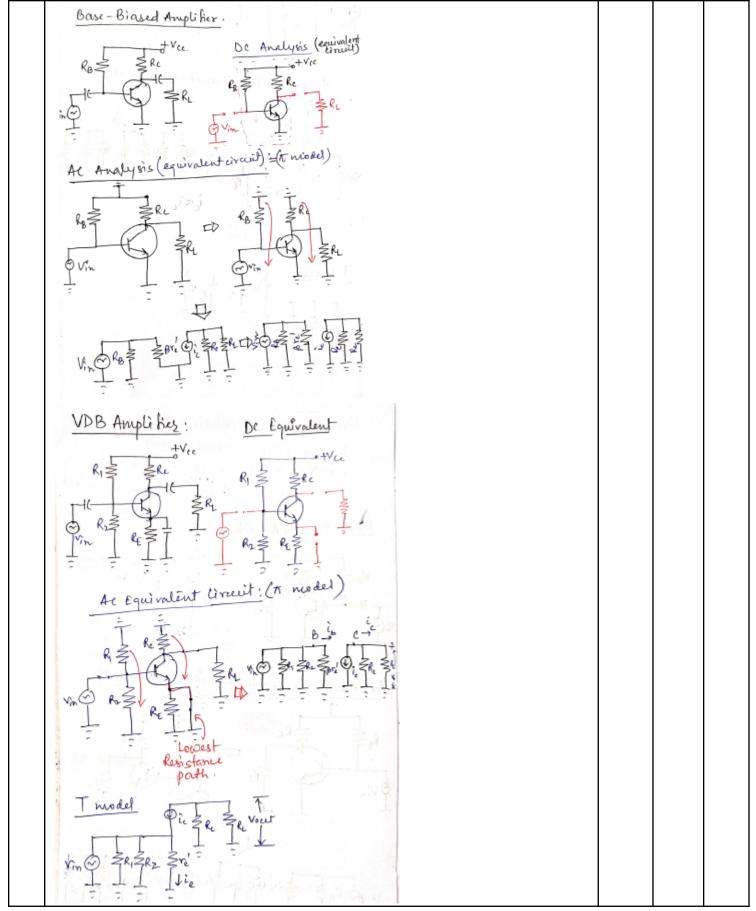
It is called feedback because the Change in emitter voltage is being fed back to the base
it opposes the original change on collector weeks.
+ Equations for analyzing the entry of feet the out
IE = VCC - VBE -N RE + RB/BOC
VE = IERE ->0
VR = VE + 0.7V →3
Vc = Vcc - IcRc → @
If REYY RB/R TE = YCC - VRE -> 3.
(b) Define AC Reta and AC Emitter resistance

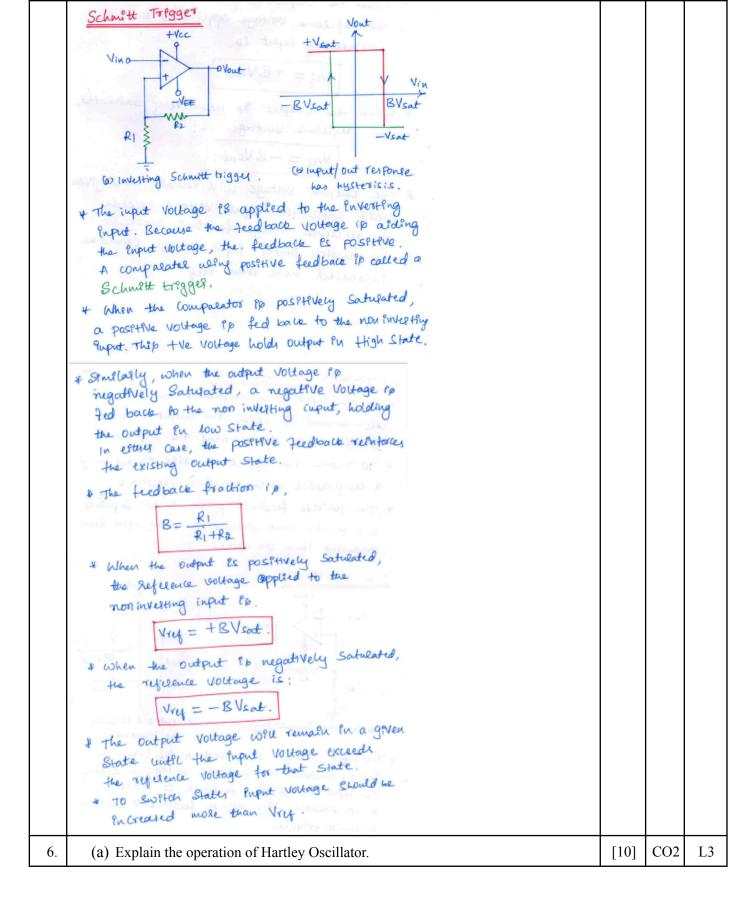

(b) Define AC Beta and AC Emitter resistance.

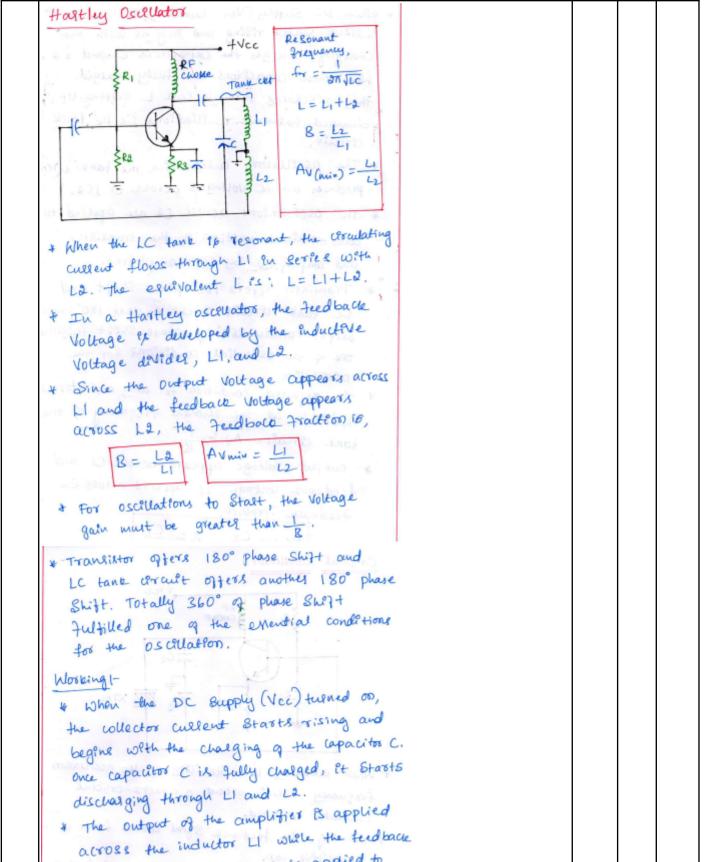

AC Beta | The ac autent galve is rated of ac collector cullent to the ac base culsent.

ic -> Pule ac collector Cullent

lo -> Pull ac base cullent.

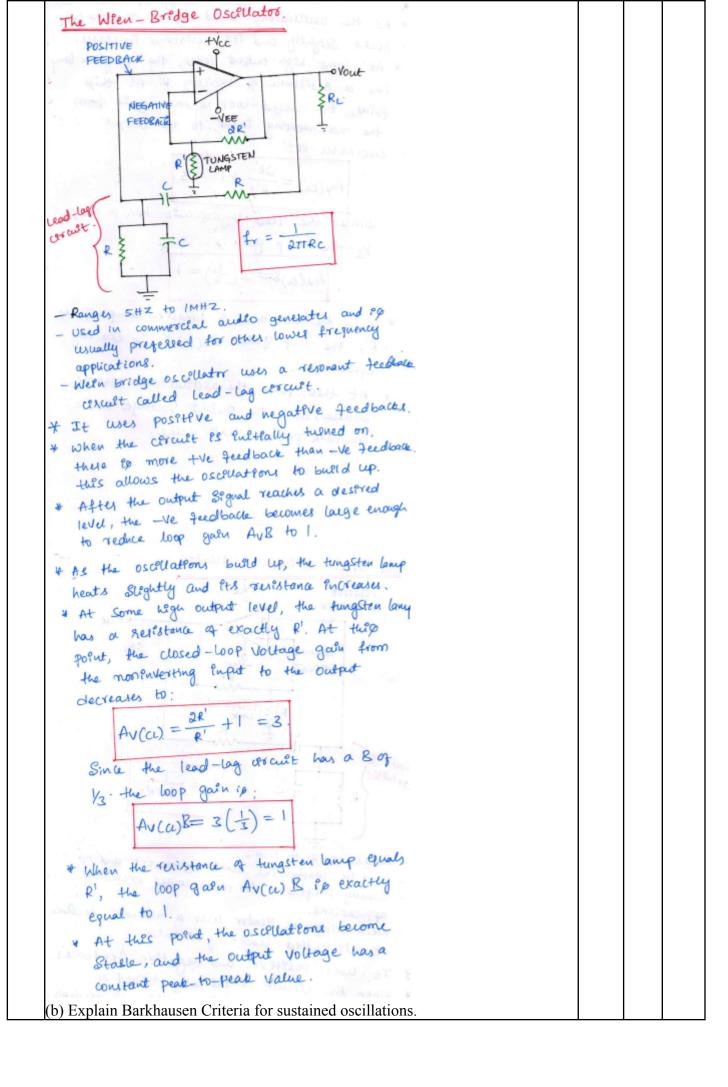

	AC Resistance of Emitter The Variable resistance or of the emitted-base junction transistor is called the Ac It is defined as the conservation thange in the corresponding Te' = Te Total base-emitted voltage Te' = STM Te' = VT TE	dynamic relitance diode of a emittle relistance. Change in the Vided by the of emittle cullent. = IEA +ie. EVBE = VREA + Vbe.			
2.	Determine the collector-emitter voltage, collector current, and collector voltage in the given figure. Also, draw the load line and find the Q-point.	R_1 R_2 R_3 R_6	[10]	CO1	L3


AC Emitter Resistance re > ac emitter Resistance. re= RElIRL. Ac equivalent circuit ; T nodel 1- T model 1-Vollage galn |from the AC equivalent circuit of emitter followy (liling T model). Vout = ie. Te. Vin= le (retre'). AV = Vout = Ke(re) Av = re'tre wheally retry re : Ar TE = 1 Av =1 - Since gain =1, the output will be same as input. Hence It is known as Fruitter follower Amplifier


input impedance of Base. Zen ~ 12te] :: rexxré. input impedance of stage. [zen (stage) = 11 12 11 16 (re+ve'). Advantage! - Even though, the output voltage is some as input voltage, the emitter follower can produce large of autent. - tuitter follower is not a voltage ampiritie but a culsent (1) power ampiritie.			
Output impedance			
4. Draw T model and π model of (i)base biased amplifier (ii)Voltage divider bias amplifier	[5+5]	CO1	L2

P.T.O

_	Explain	the	operation	of	inverting	Schmith	Trigger	circuit	with	necessary		~~•		l
5.	diagrams.										[10]	CO2	L1	



Voltage drawn across is is applied to

(b) Find the output voltage Vo in the following OPAMP circuit.

the base of the transiltor.

8. Rp. 5t.2 Ri. 2k2 Vol. = $\left(1 + \frac{Rf}{R_1}\right) \left(\frac{V_1 + V_2 + V_3}{3}\right)$ Vol. = $\left(1 + \frac{Sk}{R_1}\right) \left(\frac{1 + 2 + 3}{3}\right)$ Vol. = $\left(3.5\right) \left(3\right) = \frac{7}{4}V \Rightarrow 01P$ of 1^{st} stage. Old 4^{st} 2nd stage $V_0 = ?$ $V_0 = -\frac{Rf}{R} \times V_01$ $V_0 = -35V$.			
7. (a) Explain the operation of the Wein Bridge oscillator with necessary equations	s. [5+5]	CO2	L3

Barkhausen Coftestal	2
1. Initially, loop goin A	vB pp greater than
1 at the frequency who	ie the loop phase
eneft to 0°.	Q.
a After the derived output	t level ep reached,
AVB must decrease to	1 by reducing
eather Av @ B.	Production .

CI CCI HOD