USN CMRIT
Internal Assessment Test 1 — Sept. 2025
Sub: Intelligent Systems and Machine Learning Algorithms Code: BEC515A
Date: 07/11/2024| Duration: |90 Max 50 Sem:|V Branch: [ECE
mins Marks:
RB
Answer any S full questions M:rk co T
[10] |CO3 | L2

a) What are the key differences between informed search and unformed search
strategies?

Sol:

Informed Search, also known as heuristic search, involves using specific
knowledge or heuristics about a problem to find solutions more efficiently. In
contrast, Uninformed Search, or blind search, does not have such additional
information and explores the search space without guidance.

Informed Search is often faster and more efficient as it can intelligently narrow
down the search space, thanks to its use of heuristics. Uninformed Search
methods, on the other hand, systematically explore the search space and are
typically slower due to lack of guidance.

Examples of Informed Search algorithms include A* and Greedy Best-First
Search, which use heuristics to estimate the best path to a goal. Uninformed
Search algorithms like Breadth-First Search and Depth-First Search explore all
paths equally without such estimations.

Informed Search is ideal for complex problems where some understanding of the
problem space is available. Uninformed Search is suitable for simpler problems or
when little is known about the domain.

b) Explain Uniform-cost search with an example.

Sol: Uniform Cost Search (UCS) is a search algorithm used in artificial
intelligence (Al) for finding the least cost path in a graph. It is a variant of
Dijkstra's algorithm and is particularly useful when all edges of the graph have
different weights, and the goal is to find the path with the minimum total cost from
a start node to a goal node.

[UCS uses a priority queue to store nodes. The node with the lowest cumulative
cost is expanded first. This ensures that the search explores the most promising
paths first. UCS calculates the cumulative cost from the start node to the current|
node and prioritizes nodes with lower costs. UCS explores nodes by expanding
the least costly node first, continuing this process until the goal node is reached.
The path to the goal node is guaranteed to be the least costly one.

Example:

A = D 11
5
Source 15)
E_\" b F
4
4
O——0@
8
Destination

'We will have an empty priority queue and a boolean visited array. We will
insert A with cost 0 into the queue.

EL’"’M U Jomrre Cosf'&eaxt]n—}

Irablad a5
to)
ol D), :
N \{ 3
- e
B -"g)
- “‘(_E/,.
\’-\oa,!_f\cddv '

Vs yaumlarme a r.rv\‘)o-s-'a\,&] qQuasa. . ard, Haa

\,M‘&.UM nodas .

B(s) ,D (19).

A

c.(9), o), Fus) . B,
&

D

s
\‘ /F-ﬁ 2@(>C'q\ D(w), E(l1>) F(20)
1 F/

o g/ e E(1), F{20),F(24)

2

N

/

~

(&) € Ripo) Fla1) Elzu) F

B
' E cam ke seoackhidl 1N a vwivivusan cott ©f f"f'—{

m

|
.". pom A - B C—E)

=

& Our‘au_k Q_J UCZ

What are the key elements of problem formulation, and how does problem|
formulation impact the effectiveness of a search strategy? Explain with
example.

Sol:

In Artificial Intelligence (AI) problem-solving, the first and most crucial step
is problem formulation, because it defines what exactly the agent needs to do.
A well-formulated problem allows the search algorithm to find an effective
solution efficiently.

Example (8-Puzzle
Problem)

The starting point of the The initial configuration of
problem — where the agent tiles on the 3x%3 puzzle

Element Description

1. Initial
state

begins. board.

COl

Ll

The set of all possible Moving the blank tile up,
actions that can be taken down, left, or right (when
from a given state. possible).

Describes the result of each If the blank moves left, the
action — what new state tile left of it moves into its
results from taking aposition, changing the
particular action in a state. board configuration.

4. Goal When the tiles are in order

state (or E;\in:oslvzv;?ﬁeltrcr)rtﬁ:r?ls o (1-8) with the blank in the
goal test) p " bottom-right corner.

2. Actions
(Operators)

3.
Transition
model

Assigns a numerical cost to

5. Path cost Usually, the cost of each

(or cost cach path — used to move = 1; total cost =
. compare alternative ’

function) solutions number of moves.

Example:

An agent needs to find the shortest path from Arad to Bucharest (a classic Al
example).

o Initial state: Arad

e Actions: Drive to neighboring cities connected by roads.

e Transition model: Resulting city after traveling along a road.
¢ Goal test: City = Bucharest

o Path cost: Total distance (in km)

If the formulation is clear, a search algorithm (like Uniform Cost Search or A*) will
find the optimal path quickly (Arad — Sibiu — Fagaras — Bucharest).

If the formulation misses important details (e.g., ignores distances or includes
irrelevant roads), the search might explore unnecessary paths, increasing time and
cost, or even fail to find the shortest route.

A well-formulated problem simplifies the search space and guides the search
algorithm efficiently toward the goal, whereas a poor formulation can make
even simple problems computationally expensive or unsolvable.

What is a "state space," and how is it used in the context of
problem-solving? Give an example of a state space in Vacuum Cleaner search
problem?

Sol:

A state space is the set of all possible states that can be reached by an agent when
performing actions starting from the initial state.

In simple terms:

The state space represents everything that could possibly happen in the
environment — every situation the agent might find itself in while trying to solve
the problem. state space is the entire “map” of possible situations the agent can be
in. The search algorithm navigates this map to find a path from the start (initial
state) to the destination (goal state).

It defines the “search world” in which an Al agent looks for a solution.

[10]

CO2

L3

s = L. B

L| =i = N B
L = | = N

I L s
.-""F-H- r?:- -‘;E-H"\-u_
.-""--—-- -\-H—H"ﬂ-.
- R B
7 ™ ~ n s
L| i i L |'/ = i \|R
b 2 L s P - N e/
A L —— - L)
R § e 5 A
5 e 5
d-'--_ “ - i

i

L |I ;‘Q ;CQ /H\ R
R A P

rd
L } L .)
5 5
Figure 3.3 The state space for the vacuum world. Links denote actions: L = Lefi, R =
Right, 5 = Suck
CI CCl HOD

LG YEARS 4

§ CMRIT

* CMR INSTITUTE OF TECHNOLOGY, BENGALURU.

ACCHEDITED WITH A+ GR\DE BY NAAC

Sol:

|:)peciﬁc goals.
efinition:

What is an Intelligent agent? Explain in detail the structure of an intelligent
agent and the interactions of the different components of an intelligent agent
with neat diagram.

[An Intelligent Agent (IA) is an autonomous system that perceives its environment
through sensors and acts upon that environment through actuators to achieve

[An intelligent agent is an entity that perceives its environment and takes actions to
maximize its chances of achieving its goals.

[10] Col

e For example: A human agent has eyes, ears, and other organs for sensors

and hands, legs, vocal tract, and soon for actuators.

A robotic agent might have cameras and infrared range finders for sensors
and various motors for actuators.

A software agent receives keystrokes, file contents, and network packets as

sensory inputs and acts on the environment by displaying on the screen,
writing files, and sending network packets.

L1

/Agen[Sensors e -\\1 C

Percepts

~
JuauodIAuyg

| Actions

\ Actuators /, - /

A. Sens
[]

1.
2.

Figur

e 2.1 Agents interact with environments through sensors and actuators,
ors
Used to perceive or collect data from the environment.

Example: camera, microphone, temperature sensor, etc.

B. Actuators

Used to act or make changes in the environment.

Example: wheels, motors, display, robotic arms, etc.

C. Agent Program (the brain)

The decision-making component that processes perceptions and selects
appropriate actions.

It can include:
o Performance measure (defines success)
o Knowledge base (what the agent knows)
o Inference/Decision-making system

o Learning module (improves with experience)

Cycle of Interaction:

Perception: Sensors perceive the environment.

Reasoning/Decision: The agent processes inputs and decides the next action
using its knowledge.

Action: Actuators execute the chosen action.

Learning: The agent evaluates outcomes and learns to improve future
actions.

Explain different types of Agents. With examples.
Type Description Example

Acts only on the current percept. A vacuum cleaner that

1. Simple Ignores history or future sucks dirt if it detects

Reflex .. - .

Avent consequences. Uses condition— dirt; otherwise moves

g action rules ("if-then" rules). randomly.

2. Model- Maintains an internal model .Of A robot that remembers
the world (keeps track of partially .

Based which rooms are already
observable states). Uses both .

Reflex clean and which are
current percept and stored .

Agent . . dirty.
information.

3. Goal- Acts to achieve specific goals. A GPS navigation system

Based Uses search and planning to find that plans the shortest

Agent sequences of actions that reach the route from start to

COl1

Ll

goal.

Chooses actions based on utility
4. Utility- (happiness, satisfaction) — not
Based just goal achievement but how
Agent good the outcome is. Handles

trade-offs among multiple goals.

Can learn and improve its
5. performance from experience. Has
Learning alearning component that
Agent updates its knowledge and
decision-making.

destination.

A self-driving car that
not only reaches its
destination but also
minimizes fuel use and
travel time.

ChatGPT, AlphaGo, or a
recommendation system

that improves with user
feedback.

What is the PEAS framework, and how is it used to define the components of [[10] col| L2
an agent? Provide PEAS descriptions of the following agents: a) Medical
diagnosis system b) Part-picking Robot
PEAS stands for:
P — Performance measure
E — Environment
A — Actuators
S — Sensors
Purpose of PEAS:
e To clearly specify what the agent needs to do, where it operates, and how it
interacts with the environment.
e It helps in designing agent programs by breaking down the problem into
understandable parts.
o e Example (Vacuum
Component Description Cleaner Agent)
Performance Criteria that define how ﬁgi?r?t ?ii?emeilee:ned’
Measure (P) successful the agent is. used & ’ &y
Environment The external world the agent Rooms with dirt, walls,
(E) operates in. obstacles.
Devi h h which th . .
Actuators (A) evices through w 1 the Move left/right, suck dirt.
agent acts on the environment.
Devices through which the . .\
. Dirt sensor, position
Sensors (S) agent perceives the
. Sensor.
environment.
Agent Type Performance Environment Actuators Sensors
Measure
M.edlcal. Diagnostic ‘ Patlejnts, Display, Patient data,
Diagnosis accuracy, patient medical alerts,
test results
System recovery databases records
Part-Picking Picking accuracy, Factory floor, Robotic Cam;rgs,
. . proximity
Robot speed, efficiency parts bins arm, motors
sensors
a) What are the four main performance parameters (completeness,|5] coz2 | L2
optimality, time complexity, and space complexity) used to evaluate
[5] co2 | L2

search algorithms.

Sol:
What It

Parameter Definition Example / Note
Measures

Determines whether the e BFS is complete because
1. . . Reliability it will eventually find a

algorithm is . .
Completen of the solution if one exists.

guaranteed to find a) .
ess . . . search. DFS is not complete in

solution (if one exists). e

infinite state spaces.

Checks whether the

algorithm finds the . BEFS is optimal if all step
2. best (least-cost or t%zahty of costs are equal. A* is
Optimality shortest) solution . optimal if the heuristic is

. solution. ..

among all possible admissible.

ones.

Measures the total time Depends on the number
3. Time requl?ed tF) find a Speed / of states explpreq; BFS
Complexity solution (in terms of Efficiency has exponential time

number of nodes complexity in large

generated or expanded). spaces.

Measures the amount

of memory required Memory DFS uses less space than
4. Space : :

., during the search usage/ BFS because it stores

Complexity

process (for storing Scalability only a single path.
nodes, paths, etc.).

b) Explain Depth first search Strategy with functional description and
performance measures.

Sol:

[Depth First Search (DFS) is a uninformed (blind) search strategy that explores a
search tree by expanding the deepest unexpanded node first.

It goes as deep as possible along one branch before backtracking to explore other
branches.

The basic algorithm:
e Start from the initial state (root node).
e Explore one successor (child) completely before moving to the next.

e When a dead-end (no more successors) is reached, backtrack to the most
recent node that still has unexplored paths.

o Continue until a goal state is found or all nodes are explored.

1. Start with a stack containing the initial state.
2. Repeat until the stack is empty:
a. Pop the top node from the stack (current node).
b. If the node is a goal state — return success (solution found).
c. Else, generate all successors of the node.
d. Push the successors onto the stack (in any order).

3. If stack becomes empty — return failure (no solution found).

Performance

Parameter Description (for DFS)

Not complete in infinite-depth or cyclic spaces (it may get
Completeness stuck going infinitely deep). Complete if the search space
is finite.

o Not optimal — may find a suboptimal (longer) path
Optimality before the shortest one.
Time O(b"m) — where b = branching factor, m = maximum

Complexity depth of the search tree.

Space O(bm) — only stores one path from root to leaf (plus
Complexity unexpanded siblings). Very space efficient.

CI CCI HOD

