

Internal Assessment Test 1 – Sept. 2025

Sub: Intelligent Systems and Machine Learning Algorithms Code: BEC515A

Date: 07/ 11 / 2024 Duration: 90

mins

Max

Marks:

50 Sem: V Branch: ECE

Answer any 5 full questions
Mark

s

CO
RB

T

1
a) What are the key differences between informed search and un informed search

strategies?

Sol:

Informed Search, also known as heuristic search, involves using specific

knowledge or heuristics about a problem to find solutions more efficiently. In

contrast, Uninformed Search, or blind search, does not have such additional

information and explores the search space without guidance.

Informed Search is often faster and more efficient as it can intelligently narrow

down the search space, thanks to its use of heuristics. Uninformed Search

methods, on the other hand, systematically explore the search space and are

typically slower due to lack of guidance.

Examples of Informed Search algorithms include A* and Greedy Best-First

Search, which use heuristics to estimate the best path to a goal. Uninformed

Search algorithms like Breadth-First Search and Depth-First Search explore all

paths equally without such estimations.

Informed Search is ideal for complex problems where some understanding of the

problem space is available. Uninformed Search is suitable for simpler problems or

when little is known about the domain.

b) Explain Uniform-cost search with an example.

Sol: Uniform Cost Search (UCS) is a search algorithm used in artificial

intelligence (AI) for finding the least cost path in a graph. It is a variant of

Dijkstra's algorithm and is particularly useful when all edges of the graph have

different weights, and the goal is to find the path with the minimum total cost from

a start node to a goal node.

UCS uses a priority queue to store nodes. The node with the lowest cumulative

cost is expanded first. This ensures that the search explores the most promising

paths first. UCS calculates the cumulative cost from the start node to the current

node and prioritizes nodes with lower costs. UCS explores nodes by expanding

the least costly node first, continuing this process until the goal node is reached.

The path to the goal node is guaranteed to be the least costly one.

Example:

[10] CO3 L2

USN

We will have an empty priority queue and a boolean visited array. We will

insert A with cost 0 into the queue.

2

What are the key elements of problem formulation, and how does problem

formulation impact the effectiveness of a search strategy? Explain with

example.

Sol:

In Artificial Intelligence (AI) problem-solving, the first and most crucial step

is problem formulation, because it defines what exactly the agent needs to do.

A well-formulated problem allows the search algorithm to find an effective

solution efficiently.

Element Description
Example (8-Puzzle

Problem)

1. Initial

state

The starting point of the

problem — where the agent

begins.

The initial configuration of

tiles on the 3×3 puzzle

board.

[10] CO1 L1

2. Actions

(Operators)

The set of all possible

actions that can be taken

from a given state.

Moving the blank tile up,

down, left, or right (when

possible).

3.

Transition

model

Describes the result of each

action — what new state

results from taking a

particular action in a state.

If the blank moves left, the

tile left of it moves into its

position, changing the

board configuration.

4. Goal

state (or

goal test)

Defines what it means to

have solved the problem.

When the tiles are in order

(1–8) with the blank in the

bottom-right corner.

5. Path cost

(or cost

function)

Assigns a numerical cost to

each path — used to

compare alternative

solutions.

Usually, the cost of each

move = 1; total cost =

number of moves.

Example:

An agent needs to find the shortest path from Arad to Bucharest (a classic AI

example).

• Initial state: Arad

• Actions: Drive to neighboring cities connected by roads.

• Transition model: Resulting city after traveling along a road.

• Goal test: City = Bucharest

• Path cost: Total distance (in km)

If the formulation is clear, a search algorithm (like Uniform Cost Search or A*) will

find the optimal path quickly (Arad → Sibiu → Fagaras → Bucharest).

If the formulation misses important details (e.g., ignores distances or includes

irrelevant roads), the search might explore unnecessary paths, increasing time and

cost, or even fail to find the shortest route.

A well-formulated problem simplifies the search space and guides the search

algorithm efficiently toward the goal, whereas a poor formulation can make

even simple problems computationally expensive or unsolvable.

3
What is a "state space," and how is it used in the context of

problem-solving? Give an example of a state space in Vacuum Cleaner search

problem?

Sol:
A state space is the set of all possible states that can be reached by an agent when

performing actions starting from the initial state.

In simple terms:

The state space represents everything that could possibly happen in the

environment — every situation the agent might find itself in while trying to solve

the problem. state space is the entire “map” of possible situations the agent can be

in. The search algorithm navigates this map to find a path from the start (initial

state) to the destination (goal state).

It defines the “search world” in which an AI agent looks for a solution.

[10] CO2 L3

 ______________ _______________________ _______________________

 CI CCI HOD

4 What is an Intelligent agent? Explain in detail the structure of an intelligent

agent and the interactions of the different components of an intelligent agent

with neat diagram.

Sol:

An Intelligent Agent (IA) is an autonomous system that perceives its environment

through sensors and acts upon that environment through actuators to achieve

specific goals.

Definition:

An intelligent agent is an entity that perceives its environment and takes actions to

maximize its chances of achieving its goals.

• For example: A human agent has eyes, ears, and other organs for sensors

and hands, legs, vocal tract, and soon for actuators.

• A robotic agent might have cameras and infrared range finders for sensors

and various motors for actuators.

• A software agent receives keystrokes, file contents, and network packets as

sensory inputs and acts on the environment by displaying on the screen,

writing files, and sending network packets.

[10] CO1 L1

A. Sensors

• Used to perceive or collect data from the environment.

• Example: camera, microphone, temperature sensor, etc.

B. Actuators

• Used to act or make changes in the environment.

• Example: wheels, motors, display, robotic arms, etc.

C. Agent Program (the brain)

• The decision-making component that processes perceptions and selects

appropriate actions.

• It can include:

o Performance measure (defines success)

o Knowledge base (what the agent knows)

o Inference/Decision-making system

o Learning module (improves with experience)

Cycle of Interaction:

1. Perception: Sensors perceive the environment.

2. Reasoning/Decision: The agent processes inputs and decides the next action

using its knowledge.

3. Action: Actuators execute the chosen action.

4. Learning: The agent evaluates outcomes and learns to improve future

actions.

5 Explain different types of Agents. With examples.

Type Description Example

1. Simple

Reflex

Agent

Acts only on the current percept.

Ignores history or future

consequences. Uses condition–

action rules ("if–then" rules).

A vacuum cleaner that

sucks dirt if it detects

dirt; otherwise moves

randomly.

2. Model-

Based

Reflex

Agent

Maintains an internal model of

the world (keeps track of partially

observable states). Uses both

current percept and stored

information.

A robot that remembers

which rooms are already

clean and which are

dirty.

3. Goal-

Based

Agent

Acts to achieve specific goals.

Uses search and planning to find

sequences of actions that reach the

A GPS navigation system

that plans the shortest

route from start to

[10]

CO1 L1

goal. destination.

4. Utility-

Based

Agent

Chooses actions based on utility

(happiness, satisfaction) — not

just goal achievement but how

good the outcome is. Handles

trade-offs among multiple goals.

A self-driving car that

not only reaches its

destination but also

minimizes fuel use and

travel time.

5.

Learning

Agent

Can learn and improve its

performance from experience. Has

a learning component that

updates its knowledge and

decision-making.

ChatGPT, AlphaGo, or a

recommendation system

that improves with user

feedback.

6 What is the PEAS framework, and how is it used to define the components of

an agent? Provide PEAS descriptions of the following agents: a) Medical

diagnosis system b) Part-picking Robot

PEAS stands for:

P – Performance measure

E – Environment

A – Actuators

S – Sensors

Purpose of PEAS:

• To clearly specify what the agent needs to do, where it operates, and how it

interacts with the environment.

• It helps in designing agent programs by breaking down the problem into

understandable parts.

Component Description
Example (Vacuum

Cleaner Agent)

Performance

Measure (P)

Criteria that define how

successful the agent is.

Amount of dirt cleaned,

cleaning time, energy

used.

Environment

(E)

The external world the agent

operates in.

Rooms with dirt, walls,

obstacles.

Actuators (A)
Devices through which the

agent acts on the environment.
Move left/right, suck dirt.

Sensors (S)

Devices through which the

agent perceives the

environment.

Dirt sensor, position

sensor.

Agent Type
Performance

Measure
Environment Actuators Sensors

Medical

Diagnosis

System

Diagnostic

accuracy, patient

recovery

Patients,

medical

databases

Display,

alerts,

records

Patient data,

test results

Part-Picking

Robot

Picking accuracy,

speed, efficiency

Factory floor,

parts bins

Robotic

arm, motors

Cameras,

proximity

sensors

[10] CO1 L2

7 a) What are the four main performance parameters (completeness,

optimality, time complexity, and space complexity) used to evaluate

search algorithms.

[5] CO2 L2

 [5] CO2 L2

Sol:

Parameter Definition
What It

Measures
Example / Note

1.

Completen

ess

Determines whether the

algorithm is

guaranteed to find a

solution (if one exists).

Reliability

of the

search.

BFS is complete because

it will eventually find a

solution if one exists.

DFS is not complete in

infinite state spaces.

2.

Optimality

Checks whether the

algorithm finds the

best (least-cost or

shortest) solution

among all possible

ones.

Quality of

the

solution.

BFS is optimal if all step

costs are equal. A* is

optimal if the heuristic is

admissible.

3. Time

Complexity

Measures the total time

required to find a

solution (in terms of

number of nodes

generated or expanded).

Speed /

Efficiency

Depends on the number

of states explored; BFS

has exponential time

complexity in large

spaces.

4. Space

Complexity

Measures the amount

of memory required

during the search

process (for storing

nodes, paths, etc.).

Memory

usage /

Scalability

DFS uses less space than

BFS because it stores

only a single path.

b) Explain Depth first search Strategy with functional description and

performance measures.

Sol:

Depth First Search (DFS) is a uninformed (blind) search strategy that explores a

search tree by expanding the deepest unexpanded node first.

It goes as deep as possible along one branch before backtracking to explore other

branches.

The basic algorithm:

• Start from the initial state (root node).

• Explore one successor (child) completely before moving to the next.

• When a dead-end (no more successors) is reached, backtrack to the most

recent node that still has unexplored paths.

• Continue until a goal state is found or all nodes are explored.

1. Start with a stack containing the initial state.

2. Repeat until the stack is empty:

 a. Pop the top node from the stack (current node).

 b. If the node is a goal state → return success (solution found).

 c. Else, generate all successors of the node.

 d. Push the successors onto the stack (in any order).

3. If stack becomes empty → return failure (no solution found).

Performance

Parameter
Description (for DFS)

Completeness

 Not complete in infinite-depth or cyclic spaces (it may get

stuck going infinitely deep). Complete if the search space

is finite.

Optimality
 Not optimal — may find a suboptimal (longer) path

before the shortest one.

Time

Complexity

O(b^m) — where b = branching factor, m = maximum

depth of the search tree.

Space

Complexity

O(bm) — only stores one path from root to leaf (plus

unexpanded siblings). Very space efficient.

 ______________ _______________________ _______________________

 CI CCI HOD

