CBCS SCHEME

	g 1 kg 1/2		
USNE			1.5

BEC602

Sixth Semester B.E/B.Tech. Degree Examination, June/July 2025 VLSI Design and Testing

Max. Marks:100

** BANGALOW Note: 1. Answer any FIVE full questions, choosing ONE full question from each module.

2. M: Marks, L: Bloom's level, C: Course outcomes.

		Module – 1	\mathbf{M}	L	C
1	a.	Compare CMOS and NMOS logic.	5	L3	CO
	b.	With neat diagram, explain the physical representation of transmission gate.	5	L2	CO
	c.	Design CMOS compound gate for the functions:	10	L3	CO
		i) $Y = \overline{A(B+C) + DE}$ ii) $Y = \overline{AB} + A\overline{B}$.			
		OR /			
2	a.	Design D-flip-flop using transmission gates and explain its operation with necessary conditions on LD input.	7	L3	CO
	b.	Illustrate different alternate circuit representations used in digital circuit designs with an example for each.	6	L2	CO
	C.	With a neat diagram, explain the physical representation of CMOS inverter.	7	L2	CO
		Module – 2			
3	a.	With neat diagram, explain the working of nMOS enhancement mode transistor under various voltage conditions.	6	L2	CO
	b.	How does body effect influences threshold voltage? What are the design strategies to minimize body effect?	6	L2	CO
	c.	For an nMOSFET, derive the equation for drain current in linear and saturation region.	8	L3	CO
		OR			
4	a.	Explain the working of pseudo nMOS inverter. Find the output voltage equation for pseudo nMOS inverter.		L3	CO
	b.	Find the expression for V _{out} in region C of CMOS inverter transfer characteristics.	8	L3	CO
	c.	Illustrate with suitable sketch, latup phenomenon in CMOS circuits and also explain its prevention.	6	L2	CO
		Module – 3			
5	a.	Illustrate with neat diagram wafer processing and selective diffusion.	6	L2	CO
71.3	b.	Derive the equation for rise time, fall time and delay time.	8	L3	CO
	c.	Explain with neat diagram, the process flow of fabricating inverter (CMOS) using Twin-tub process.	6	L2	СО
		1 of 2			

			BEC602		
		OR OR			
6.	a:	What is sheet resistance? Estimate the sheet resistance for a given layer having length 'L' and width 'W'.	7	L4	CO3
	b.	Explain the various capacitances in MOS transistor.	6	L2	CO3
	c.	Estimate the total capacitance for the structure as shown in below Fig.Q6(c).	7	L4	CO3
		8h 2h 2h Fig.Q6(c)			
7	a. b.	Module – 4 Differentiate static and dynamic CMOS circuit with relevant diagrams. Explain the percharge and evaluate phase in dynamic logic.	7	L3	CO4
		Design a CVSL (Cascade Voltage Switch Logic) based XOR gate.	7	L3	CO4
	С.	OR		LIS	CO-
8	a.	Design a 2 : 1 multiplexer using pass transistor logic.	7	L3	CO ₄
	b.	Draw and explain the layout diagram of a 2 input NAND gate.	6	L2	CO4
	c.		7	L3	CO4
	<u> </u>	Design a schematic and layout for $Z = (A + B + CD)$ using Euler's graph.		LIS	-
		Module – 5			
9	a.	With appropriate neat diagram of two inverter bistable element, explain in detail the voltage transfer characteristics (VTC) and potential energy analogy.	7	L2	COS
	b.	Explain the operation of SR latch using CMOS NAND2 gates and switch level diagram.	6	L2	COS
	c.	With neat appropriate diagrams, explain the clocked JK – Latch using NOR2 gates.	7	L2	COS
		OR		T	
10	a.	What is structured design strategy? Explain the factors modularity, regularity and locality.	7	L2	COS
	b.	Distinguish self-test and built-in test with examples.	6	L3	COS
	c.	Explain with neat diagram, Gate Array Design flow. CMRIT LIBRARY **********************************	7	L2	COS

2 of 2