Module-3

Time As Ahrs

USN OF THE CONTRACTOR OF THE C

Fifth Semester B.E. Degree Examination, June/July 2025

Principles of Communication Systems

Max. Marks: 100

18EC53

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

- a. Illustrate the item domain and frequency domain characteristics of standard amplitude modulation produced by a single tone. (10 Marks)
- b. Explain switching modulator with circuit diagram and characteristic curve. (10 Marks)

OR

2 a. Explain the generation of DSBSC wave using a ring modulator.

(07 Marks)

- Explain the scheme of generation and demodulation of VSB modulated wave with relevant spectrum of signals and mathematical expressions.
- c. Explain with block diagram of FDM system.

(06 Marks)

Module-2

3 a. From the fundamentals deduct an expression of WBFM and plot its frequency spectrum.

(10 Marks)

- b. What is frequency modulation? Deduct the expression for a narrow band FM signal.
 Represent a narrow band FM signal with neat phasor diagram.

 (08 Marks)
- c. A FM signal has sinusoidal modulation with W = 15 kHz and modulation index $\beta = 2$. Using Carson's rule determine the transmission bandwidth and deviation ratio. Assume $\Delta f = 75$ kHz. (02 Marks)

OR

- a. With relevant mathematical analysis and block diagrams show the reconstruction of message signal from FM wave using PLL. (10 Marks)
 - b. Explain the generation of FM wave using a neat block diagram and necessary equations.
 (06 Marks)
 - c. A Carrier is frequency modulated by a sinusoidal modulating signal of frequency 3 kHz resulting in a frequency deviation of 10 kHz.
 - (i) What is the bandwidth occupied by the modulated waveform?
 - (ii) If the amplitude of the modulating signal is increased by a factor of 2 and its frequency is lowered to 1 kHz. Determine the new bandwidth. (04 Marks)

		THOUGH 5	
5	a.	Obtain the expression for noise equivalent band width.	(07 Marks)
	b.	Prove that FOM of AM receiver using envelope detector is $\frac{\mu^2}{2 + \mu^2}$.	(07 Marks)
	c.	Explain the use of pre-emphasis and de-emphasis in an FM system.	(06 Marks)
		OR	
6	a.	Prove that FOM as a DSBSC receiver in ONE.	(08 Marks)
	b.	Define: i) Shot Noise ii) Thermal Noise	(0(1)(-1-)
		iii) White Noise.	(06 Marks)
	c.	Write neat block diagram explain the FM threshold reduction.	(06 Marks)
		Module-4	
7	a.	What are the advantages of digital signal over analog signal?	(06 Marks)
	b.	State sampling theorem and explain same with neat sketches and equation.	(07 Marks)
	c.	Explain with block diagram for TDM.	(07 Marks)
		OR	(0=35)
8	a.	Explain with diagram the generation of PPM waves.	(07 Marks)
	b.	Explain the detection of PPM waves.	(07 Marks)
	c.	Explain the following terms: i) Under sampling ii) Over sampling	
		iii) Nyquist rate.	(06 Marks)

Module-5

- 9 a. What is Quantization? Why it is required in digital communication? Explain symmetric quantizer of midtread and midrise type. (08 Marks)
 - b. With neat block diagram, explain the working of PCM system.
- (04 Marks)

(08 Marks)

18EC53

c. What is companding? Explain different laws of companding.

CMRIT LIBMARY BANGALORE - 560 037

10 a. What is Quantization noise? Derive the expression for O/P signal to Noise Ratio of a Quantizer. Consider a sinusoidal modulating signal of amplitude AM which uses all representation levels provided. Calculate the (SNR)₀ for the O/P of quantizer of the above signal.

(08 Marks)

b. What is Delta modulation? Explain the same with block diagrams. (06 Marks)

c. Write a note on VOCODER. (06 Marks)
