Fifth Semester B.E./B.Tech. Degree Examination, June/July 2025

Digital Communication

Max. Marks: 100

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

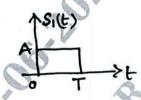
- a. Explain generation and detection of BPSK with necessary figures and equations. (08 Marks)
- b. An FSK system transmits binary data at a rate of 10^6 bits/sec. Assuming channel noise is AWG with zero mean and power spectral density 2×10^{-20} watts/Hz. Determine the average probability of error. Assume coherent detection and amplitude of received sinusoidal signal for both symbol 1 and 0 to be 1.2 microvolt. (Take erf (3) = 0.99998). (06 Marks)
- c. With Geometric representation and expressions, explain 16-QAM.

2

a. Draw the block diagram of QPSK Transmitter and receiver and explain the operation.

(08 Marks)

(06 Marks)


- b. A binary data stream 0010010011 needs to be transmitted using DPSK technique. Prove that the detected sequence remains invariant with the choice of initial bit. (08 Marks)
- c. In a digital communication system, the bit rate is 1 Mbps and carrier frequency of transmission is 100 MHz. Find the symbol rate of transmission and bandwidth requirement of the channel in 16-ary PSK system.

 (04 Marks)

Module-2

- 3 a. Explain the Geometric representation of set of M energy signals as linear combinations of N-orthonormal basis functions for N = 2 and M = 3 with necessary figures and expressions.

 (10 Marks)
 - b. Two functions $S_1(t)$ and $S_2(t)$ are given in Fig Q3(b) for an interval $0 \le t \le T$ seconds. Using Gram –Schmidt procedure, express these functions in terms of orthonormal functions. Also sketch $\phi_1(t)$ and $\phi_2(t)$

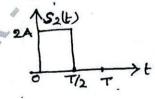


Fig Q3(b)

(10 Marks)

OR

- 4 a. Discuss conversion of the continuous AWGN channel into a vector channel. (10 Marks)
 - b. What is correlative coding? Explain Duobinary signaling scheme with necessary figures.
 (10 Marks)

Module-3

- 5 a. With a neat block diagram, explain the model of spread spectrum Digital communication system. (08 Marks)
 - b. Define processing gain, probability of error and anti-jamming characteristics (ie Jamming Margin) of DS-SS system.
 - c. Write short notes on Psendonoise sequence.

(06 Marks)

OR

6 a. Explain the working of FH/MFSK transmitter and receiver with neat block diagram.

(08 Marks)

b. Explain CDMA based on IS-95, Forward link.

(06 Marks)

c. In a direct sequence, spread-spectrum modulation, it is required to have a jamming margin greater than 26dB. The ratio $\frac{E_b}{No}$ is set at 10. Determine the minimum processing gain and the minimum number of stages required to generate the maximum length sequence.

(06 Marks)

Module-4

7 a. Define self information, average information, information rate and coding efficiency.

(04 Marks)

b. Refer the state diagram of the Markov source shown in Fig Q7(b). Find: i) probabilities of the state ii) Entropy of each state iii) Entropy of the source.

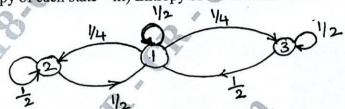


Fig Q7(b) (10 Marks)

c. For four symbols S₁, S₂, S₃ and S₄ having probabilities of occurrence given by 0.1, 0.2, 0.3 and 0.4. Construct a code using Shannon-Fane encoding algorithm and find the efficiency of coding.

(06 Marks)

OR

- 8 a. A discrete memoryless source has an alphabet $x = \{x_1, x_2, x_3, x_4\}$. It is known that $P(x_1) = 0.4$, $P(x_2) = 0.3$, $P(x_3) = 0.2$ and $P(x_1) = 0.1$. Find H(x) and show that $I(x_1, x_2, x_3, x_4) > H(x)$ (04 Marks)
 - b. A source produces six symbols x_1 , x_2 , x_3 , x_4 , x_5 and x_6 with probabilities 0.3, 0.25, 0.20, 0.12, 0.08, 0.05. Construct Binary Huffman code. Find efficiency of coding and draw decision tree. (10 Marks)
 - c. Explain in brief, the methods of controlling errors, types of errors and types of codes.

 (06 Marks)

CMRIT LIBRARY

Module-5

a. Consider a linear block code with n = 6 and k = 3. The check bits of this code are derived using the discrete relations given below: Take $D = [0 \ 0 \ 1]$

 $C_4 = d_1 \oplus d_2$

 $C_5 = d_1 \oplus d_2 \oplus d_3$

 $C_6 = d_2 \oplus d_3$

- i) Find Generator matrix, G
- ii) Find all the code-words of the linear block code
- iii) Find the error detecting and error correcting capabilities of the code. (08 Marks)
- b. Consider a single error correcting code (Hamming code) for a message block of size equal to 11. How many check bits are required? Find a parity check matrix for this code. (08 Marks)
- c. Draw the syndrome calculator circuit for a (7,4) single error correcting code. (04 Marks)

1 of 3

2 of 3

OR

10 a. Refer the code rate $r = \frac{1}{2}$ and constraint length k = 3 convolution encoder shown in Fig Q10(a) below. Find C for the message m = {1, 1, 0, 1} using Time domain approach and transform domain approach.

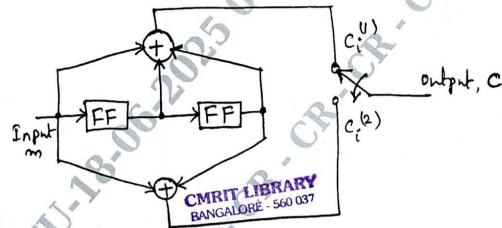
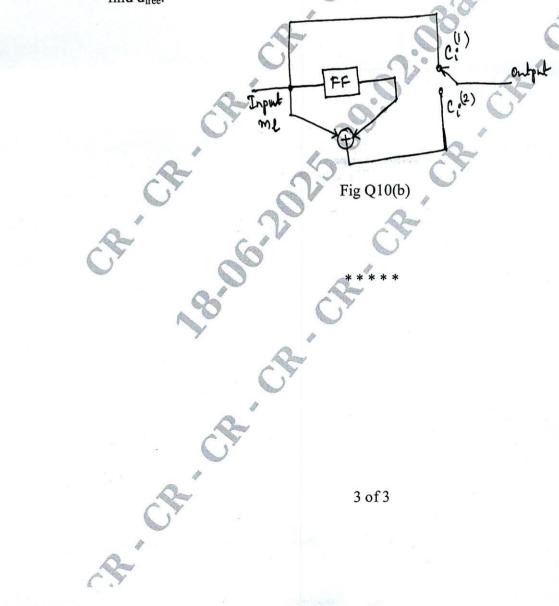



Fig Q10(a)

(10 Marks)

b. For the convolution encoder shown in Fig Q10(b), draw the state diagram, tree diagram and find dfree.

(10 Marks)