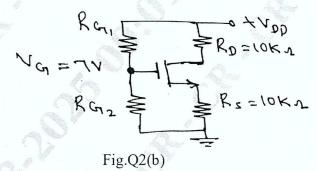
18EC42

Fourth Semester B.E./B.Tech. Degree Examination, June/July 2025 **Analog Circuits**

Max. Marks: 100

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1


- a. Explain the design constraints of a classical discrete circuit biasing arrangement with circuit and relevant equations. How does R_E provide a negative feedback action to stabilize the bias current? (10 Marks)
 - b. Design biasing using a collector to base feedback resistor to obtain a DC current of 1mA at the collector. Assume $V_{CC} = 10V$, $V_{CE} = 2.3V$ and $\beta = 100$. (07 Marks)
 - c. Mention any three the advantages of MOSFET compared to BJT.

- 2 a. Explain the following biasing scheme of MOS circuits:
 - i) Biasing by fixing V_{GS}
 - ii) Biasing by fixing V_G and connecting a resistance at the source.

(10 Marks)

(03 Marks)

b. For the circuit shown in Fig.Q2(b), find the value of V_{GS} to establish a DC bias current of $I_D = 0.5 \text{mA}$. Device parameters are $V_t = 1V$, $K'_n \frac{W}{I} = \text{lmA}/V^2$ and $\lambda = 0$. What is the % change in I_D obtained when the transistor is replaced with another having $V_t = 1.5 \text{V}$.

(10 Marks)

Module-2

- 3 a. What are the basic configurations for connecting the MOSFET as an amplifier and explain (08 Marks)
 - With the help of AC equivalent circuit, derive the expressions for R_{in}, Av₀, R₀ and G_v for a common source amplifier without R_S. (12 Marks)

OR

- a. Explain the various internal capacitances in the MOSFET with necessary equations.
 - (08 Marks)
 - b. Design a self biased phase shift oscillator using FET having $g_m = 500 \mu s$, $r_d = 40 K\Omega$ and a feedback network value of $R = 10 \text{ K}\Omega$. What should be the value of 'C' for sustained oscillation at 5 KHz and R_D for A > 29? (08 Marks)
 - c. Mention the features of source follower.

(04 Marks)

Module-3

- 5 a. With mathematical analysis, show how gain can be desensitized and bandwidth is increased with negative feedback.
 - b. For the block diagram shown in Fig.Q5(b), a signal of 1V from the source results in a difference signal of 10 MV being provided to the amplifying element (A) and 10V applied to the load. For this arrangement, identify the value of A and B that apply.

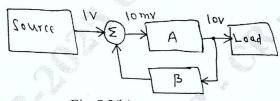


Fig.Q5(b) (08 Marks)

c. Draw the block diagram of series shunt feedback amplifier and also mention the effect of Rif, Rof. (05 Marks)

OR

- a. Explain the classification of output stage based on the Q-point.
 - Explain the working of class B output stage. Prove that maximum conversion efficiency is (08 Marks)
 - c. Mention the advantages of class C output stage.

78.5%.

(04 Marks)

(06 Marks)

(06 Marks)

(08 Marks)

18EC42

Module-4

- 7 a. Derive the expressions of Exact voltage gain, input resistance with feedback and output resistance with feedback of non-inverting amplifiers. (12 Marks)
 - b. For the inverting amplifier $R_1 = 470 \Omega$ and $R_F = 4.7K\Omega$. Assume A = 200000, $R_i = 2 M\Omega$, $R_0 = 75 \Omega$ and $f_0 = 5 Hz$. Calculate A_F , R_{iF} , R_{0F} and f_F . (08 Marks)

OR

- a. Explain the working of instrumentation amplifier using transducer bridge and also derive the expression of output voltage. (12 Marks)
 - b. Explain the working of a Schmitt trigger with necessary input and output waveforms. (08 Marks)

Module-5

- Derive the output voltage expression $V_0 = -V_R \frac{R_F}{R} (b_0 + 2b_1 + 4b_2 + 8b_3)$. (08 Marks)
 - b. For the DAC using R 2R network with R = 10 K Ω and V_R = 5 V.
 - i) Determine the size of each step if $R_F = 27 \text{ K}\Omega$
 - ii) Calculate the output voltage when the inputs b_0 , b_1 , b_2 and b_3 are at 5V.
 - c. Explain the working of non-inverting type small signal half wave rectifier.

OR CMRIT LIBRARY

- 10 a. What are the advantages of active filters?
- **BANGALORE 560 037**

(04 Marks)

b. Explain the working of a First Order Active High Pass Filter with necessary circuit and (08 Marks)

waveforms. c. In the Astable Multivibrator using 555 Timer $R_A = 2.2 \text{ K}\Omega$, $R_B = 3.9 \text{K}\Omega$ and $C = 0.1 \mu\text{F}$. Determine: i) t_c ii) t_d iii) free running frequency iv) Duty cycle. (08 Marks)

2 of 2

1 of 2