BCS401

Fourth Semester B.E./B.Tech. Degree Examination, June/July 2025 Analysis and Design of Algorithms

Max. Marks: 100

BANC	MLO	Module – 1	M	L	C
Q.1	a.	Define algorithm Explain asymptotic notations Bigh oh, Big omega and Big theta notations.	08	L2	CO1
	b.	Explain the general plan for analyzing the efficiency of a recursive algorithm. Suggest a recursive algorithm to find factorial of number. Derive its efficiency.	08	L3	CO1
	c.	If t_1 (n) \in O(g_1 (n)) and t_2 (n) \in O(g_2 (n)) then show that t_1 (n) + t_2 (n) \in O(max { g_1 (n), g_2 (n)})	04	L2	CO1
	1	OR OR			
Q.2	a.	With a neat diagram explain different steps in designing and analyzing algorithm.	08	L2	CO1
	b.	Write an algorithm to find the max element in an array of n elements. Give the mathematical analysis of this non- recursive algorithm.	08	L3	CO1
	c.	With the algorithm derive the worst case efficiency for selection sort.	04	L3	CO1
		Module – 2			
Q.3	a.	Explain the concept of divide and conquer. Design an algorithm for merge sort and derive its time complexity.	10	L3	CO2
	b.	Design an algorithm for insertion algorithm and obtain its time complexity. Apply insertion sort on these elements. 89, 45, 68, 90, 29, 34, 17	10	L3	CO2
	-	OR			
Q.4	a.	Design an algorithm for Quick sort. Apply quick sort on these elements. 5, 3, 1, 9, 8, 2, 4, 7.	10	L3	CO2
	b.	Explain Strassen's Matrix multiplication and derive its time complexity.	10	L2	CO2
	•	Module – 3			
Q.5	a.	Define AVL trees. Explain its four rotation types.	10	L2	CO3
	b.	Design an algorithm for Heap sort. Construct bottom – up heap for the list 15, 19, 10, 7, 17, 16.	10	L3	CO4
		OR			
Q.6	a.			L3	CO4
	b.	Define heap. Explain the properties of heap along with its representation.	10	L2	CO3

		Module – 4			
0.7	a.	Construct minimum cost spanning tree using Kruskal's algorithm for the following graph.	10	L3	CO4
	b.	What are Huffman trees? Construct the Huffman tree for the following data Character	10	L3	CO4
25-7		OR			
).8	a.	Apply Dijkstra's algorithm to fine single source shortest path for the given graph by considering A as the source vertex.	10	L3	CO4
	b.	Define transitive closure of a graph. Apply Warshall's algorithm to compute transitive closure of a directed graph.	10	L3	CO4

Module - 5

BCS401

		Module	- Carlotte		
Q.9	a.	Explain the following with examples. i) P problem ii) NP problem ii) NP-Complete problem iv) NP – Hard problem		L2	CO5
	b.	What is backtracking? Apply backtracking sum of subset problem. $S = \{1, 2, 5, 6, 8\}$ and $d = 9$.	g to solve the below instance of 10	L3	CO6
Q.10	a.	Illustrate N Queen's problem using back problem.	stracking to solve 4 – Queens 10	L2	CO6
	b.	Using Branch and Bound method solve to Problem. Item Weight Va. 1 4 4 4 4 2 7 4 4 3 5 2 2 7 4 4 3 5 5 2 2 5 4 5 5 6 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6	lue 0 2	L3	CO6

Fig.8 (b)