CBCS SCHEME - Summer Semester

BMATE201

Second Semester B.E/B.Tech. Degree Examination, June/July 2025

Mathematics – II for EEE Stream

Max. Marks:100

Note: 1. Answer any FIVE full questions, choosing ONE full question from each module.

2. M: Marks, L: Bloom's level, C: Course outcomes.

3. VTU Formula Hand Book is permitted.

		Module – 1	M	L	C
1	a.	Find the angle between the surfaces $x^2 + y^2 + z^2 = 9$ and $z = x^2 + y^2 - 3$ at $(2, -1, 2)$.	7	L2	CO1
	b.	If $\vec{F} = \nabla(xy^3z^2)$, find the div \vec{F} and curl \vec{F} at the point $(1, -1, 1)$.	7	L2	CO1
	c.	Find the directional derivative of $\phi = x^2yz + 4xz^2$ along the direction of the vector $(2\hat{\mathbf{i}} - \hat{\mathbf{j}} - 2\hat{\mathbf{k}})$ at $(1, -2, -1)$.	6	L2	CO1
		OR			
2	a.	Find the work done in moving the particle in the force field	7	L2	CO1
		$\vec{F} = 3x^2\hat{i} + (2xz - y)\hat{j} + z\hat{k}$ along the straight line from $(0, 0, 0)$ to $(2, 1, 3)$			
	b.	Using Green's theorem, evaluate $\int_{C} [(x^2 + xy)dx + (x^2 + y^2)dy]$ where C is the	7	L3	C01
	c.	square formed by the lines $x = \pm 1$ and $y = \pm 1$ Using Modern mathematical tools, write the code to find the gradient of $\phi = xy^2 + yz^3$.	6	L3	CO5
		Module – 2		-	
3	a.	Define subspace. Show that the intersection of two subspaces of a vector space V is also a subspace of V.	7	L2	CO2
	b.	Define a basis for a vector space. Determine whether or not the vectors form a basis of R ³ (2, 2, 1), (1, 3, 7), (1, 2, 2)	7	L2	CO2
	c.	Prove that $T: \mathbb{R}^2 \to \mathbb{R}^3$ defined by $T(x,y) = (x+y, x-y, y)$ is a linear transformation.	6	L2	CO2
		OR			
4	a.	Define linearly independent set of vector. Show that the vectors $v_1 = (1, 2, 3)$, $v_2 = (3, 1, 7)$ and $v_3 = (2, 5, 8)$ are linearly independent.	7	L2	CO2
	b.	Verify the Rank-nullity theorem for the linear transformation, $T: R^3 \to R^3$ defined by, T(x, y, z) = (x+ 2y-z, y+z, x+y-2z)	7	L2	CO2
	c.	Using the modern mathematical tool, write the code to find the basis and dimension of a vector space.	6	L3	CO5
		7 19 19 19 19 19 19 19 19 19 19 19 19 19			

1 of 3

BMATE201

		Module – 3			,
5	a.	Find the Laplace transform of, (i) $e^{-t} \cos^2 3t$ (ii) $\frac{1-e^{-at}}{}$	7	L2	CO
	1	t			
	b.	Find the Laplace transform of the periodic function defined by $f(t) = E \sin \omega t$; $0 < t < \frac{\pi}{\omega}$.	7	L2	CO
	c.	Express the following in terms of unit step function and hence find its Laplace transform of $f(t) = \begin{cases} 1 & ; & 0 < t \le 1 \\ t & ; & 1 < t \le 2 \\ t^2 & ; & t > 2 \end{cases}$	6	L3	CO
		OR			
6	a.	Find the inverse Laplace transform of, (i) $\frac{(s+2)^3}{s^6}$ (ii) $\frac{s+5}{s^2-6s+13}$	7	L2	CO
	b.	Using the convolution theorem, find the inverse Laplace transform of, $\frac{1}{(s-1)(s^2+1)}$.	7	L3	CO
	C.	Solve the differential equation by using the Laplace transform method, $\frac{d^2y}{dt^2} + 4\frac{dy}{dt} + 4y = e^{-t}, y(0) = 0, y'(0) = 0$	6	L3	CO
		Module – 4			
7	a.	By Newton-Raphson method, find the root of $xe^x = 2$ which is near 1 correct to 3 decimal places.	7	L2	CO
	b.	Using Lagrange's interpolation formula, find y at $x = 5$, given $x : 1 \mid 3 \mid 4 \mid 6$ $y : -3 \mid 9 \mid 30 \mid 132$	7	L3	CO
-	c.	Evaluate $\int_{4}^{5.2} \log_e x dx$ using Simpson's $\frac{1}{3}$ rd rule by taking seven ordinates.	6	L2	CO
		OR BANGALORE - 560 037			
8	a.	Find the real root of the equation $x \log_{10} x = 1.2$ by Regulai falsi method, correct to three decimal places in [2, 3]	7	L2	CO
	b.	From the following table find the number of students who obtained marks between 40 and 45. Marks: 30 - 40 40 - 50 50 - 60 60 - 70 70 - 80 No. of students 31 42 51 35 31	7	L2	CO
	c.	Evaluate f(9) using Newton's divided difference formula: x: 5 7 11 13 17 f(x): 150 392 1452 2366 5202	6	L2	CO

2 of 3

BMATE201

		Module – 5			
9	a.	Use Taylor's series to find y(0.1) from $\frac{dy}{dx} = x - y^2$; y(0) = 1.	7	L2	CO4
	b.	Using Runge-Kutta method of order 4, find y at $x = 0.2$ given $\frac{dy}{dx} = \frac{y - x}{y + x}$, $y(0) = 1$, take $h = 0.2$	7	L2	CO4
	c.	Apply Milne's method to find y(0.8) given, $\frac{dy}{dx} = x - y^2$; y(0) = 0,	6	L2	CO4
		y(0.2) = 0.02, y(0.4) = 0.0795, y(0.6) = 0.1762.			
***		OR			
10	a.	Using Modified Euler's method find y(20.2) and (20.4) given $\frac{dy}{dx} = \log_{10} \left(\frac{x}{y} \right)$ with y(20) = 5, h = 0.2 CMRIT LIBRARY BANGALORE - 560 037	7	L3	CO4
	b.	Use Taylor's series to find y(0.1) and y(0.2) given $\frac{dy}{dx} = 2y + 3e^x$; y(0) = 0	7	L3	CO4
	c.	Using Modern mathematical tools, write the code to find the solution of	6	L3	CO5
		$\frac{dy}{dx} = 3x + \frac{y}{2}$ at y(0.2) given y(0) = 1 taking h = 0.2			