
Page 1 of 7

CMR

INSTITUTE OF

TECHNOLOGY, BENGALURU

USN

Internal Assesment Test - I

 Sub: Introduction to Python, Data and Control Systems Code: MBABA313

Date: 05-12-2025 Duration: 90 mins Max Marks: 50 Sem: III Branch: MBA

SET- III

Marks

OBE

CO RBT

 Part A - Answer Any Two Full Questions (2* 20 = 40 marks)

1 (a) State syntax of if—else statements?

Basic Syntax:

if condition:

 # block of code if condition is True

else:

block of code if condition is False

Ex:

age = 18

if age >= 18:

print("You are eligible to vote.")

else:

print("You are not eligible to vote.")

elif (else if)

Used to check multiple conditions.

marks = 85

if marks >= 90:

print("Grade: A")

elif marks >= 75:

print("Grade: B")

else:

print("Grade: C")

• Use colons (:) at the end of if, elif, and else.

• Indentation (usually 4 spaces) is required for the code blocks.

 [03] CO1 L1

(b) Write a Python program to check whether the user-given number is odd or

even.

Program to check if a number is odd or even

num = int(input("Enter a number: "))

if num % 2 == 0:

 print(num, "is Even")

else:

 print(num, "is Odd")

Enter a number: 2

2 is an Even number.

Enter a number: 5

5 is an Odd number.

[07] CO1 L3

Page 2 of 7

(c) Apply the concepts of conditional, alternate and chained executions for

grading student performance based on marks.

Below is a Python program that uses conditional, alternate, and chained

executions to grade student performance based on marks.

Program to grade student performance using conditional, alternate, and

chained execution

marks = float(input("Enter the student's marks (0–100): "))

Conditional execution

if marks < 0 or marks > 100:

 print("Invalid marks! Please enter a value between 0 and 100.")

Alternate execution

elif marks >= 90:

 print("Grade: A+ (Excellent)")

Chained execution (elif)

elif marks >= 80:

 print("Grade: A (Very Good)")

elif marks >= 70:

 print("Grade: B (Good)")

elif marks >= 60:

 print("Grade: C (Average)")

elif marks >= 50:

 print("Grade: D (Pass)")

else:

 print("Grade: F (Fail)")

[10] CO1 L3

2 (a) State the working of a Python ‘break’ statement.

The break statement in Python is used to immediately stop a loop (either for

or while) and exit from it, even if the loop condition is still true.

What break Does

• Stops the loop instantly.

• Control moves to the first statement after the loop.

Example 1: Using break in a for loop

for i in range(1, 10):

 if i == 5:

 break

 print(i)

Output:

1

2

3

4

[03] CO1 L1

(b) Illustrate the concept of operator precedence in Python.

Operator precedence in Python determines which operators are evaluated first

in an expression.

Just like in mathematics (where multiplication happens before addition), Python

also follows a hierarchy.

Operator Precedence (Highest to Lowest)

Here is a simplified hierarchy:

1. Parentheses → ()

[07] CO1 L3

Page 3 of 7

2. Exponents → **

3. Unary operators → +x, -x, ~x

4. Multiplication / Division / Floor division / Modulus → *, /, //, %

5. Addition / Subtraction → +, -

6. Relational operators → <, <=, >, >=

7. Equality operators → ==, !=

8. Logical NOT → not

9. Logical AND → and

10. Logical OR → or

(c) Outline the importance of operators in python with examples.

Operators are special symbols that perform operations on variables and values.

Python has the following types of operators:

1. Arithmetic Operators

Used for mathematical operations.

Operator Meaning Example

+ Addition 5 + 3 = 8

- Subtraction 9 - 4 = 5

* Multiplication 6 * 2 = 12

/ Division 8 / 2 = 4.0

% Modulus (remainder) 10 % 3 = 1

** Exponent (power) 2 ** 3 = 8

// Floor division 7 // 2 = 3

✔ Example:

a = 10

b = 3

print(a + b) # 13

print(a - b) # 7

print(a * b) # 30

print(a / b) # 3.3333

print(a % b) # 1

print(a ** b) # 1000

print(a // b) # 3

2. Comparison (Relational) Operators

Used to compare values. Result is either True or False.

Operator Meaning Example

[10] CO1 L4

Page 4 of 7

== Equal to 5 == 5 → True

!= Not equal to 5 != 3 → True

> Greater than 6 > 2 → True

< Less than 3 < 7 → True

>= Greater or equal 6 >= 6 → True

<= Less or equal 4 <= 5 →True

3. Logical Operators

Used to combine conditions.

Operator Meaning Example

and True if both conditions are True (5 > 3 and 8 > 6) → True

or True if at least one condition is True (5 > 10 or 3 < 8) → True

not Reverses the condition not(5 > 3) → False

4. Assignment Operators

Used to assign and update values.

Operator Meaning Example

= Assign x = 10

+= Add and assign x += 5 (x = x + 5)

-= Subtract and assign x -= 3

*= Multiply and assign x *= 2

/= Divide and assign x /= 2

%= Modulus and assign x %= 3

**= Power and assign x **= 2

//= Floor divide and assign x //= 4

5. Bitwise Operators

Work on bits (0s and 1s).

Operator Meaning

& AND

` `

^ XOR

~ NOT

<< Left shift

>> Right shift

6. Membership Operators

Used to check membership in sequences (list, string, etc.)

Operator Meaning

in True if value present

not in True if value not present

3 (a) Difference between data cleaning and data analysis?

Feature Data Cleaning Data Analysis

Meaning

Process of fixing or removing

incorrect, incomplete, or

inconsistent data.

Process of examining cleaned

data to find patterns, insights,

and conclusions.

Purpose
Improve data quality so

analysis becomes accurate.

Make decisions, answer

questions, and find

meaningful insights.

[03] CO2 L1

Page 5 of 7

Focus Removing errors.
Understanding and

interpreting data.

Activities

involved

Handling missing values,

removing duplicates,

correcting errors, formatting

data.

Applying statistical methods,

visualizations, trends,

predictions, and reports.

Tools used
Excel, Python (Pandas),

Power BI, SQL.

Excel, Python, Power BI,

Tableau, R.

Output
Clean, structured, error-free

dataset.

Charts, insights, reports,

predictions.

When

performed?
Before data analysis. After data cleaning.

Example

Removing rows with missing

age, fixing spelling errors

(“Bananaa” → “Banana”).

Finding which fruit is sold the

most each month.

(b) What is a python library? Outline the importance of Pandas, NumPy and

Matplotlib.

A Python library is a set of ready-made tools that help you do specific tasks

easily.

Example: Instead of writing your own code for math calculations or data

analysis, you can use a library.

1. NumPy (Numerical Python)

Importance: Foundation for scientific computing

NumPy is used for:

• Fast mathematical and numerical operations

• Handling large multi-dimensional arrays

• Performing matrix operations

• Serving as a base for many other libraries (Pandas, SciPy, Scikit-learn)

Why it is important?

• Much faster than Python lists

• Supports vectorization (performing operations on entire arrays at once)

• Provides built-in mathematical functions

• Essential for machine learning calculations

2. Pandas

Importance: Data cleaning, manipulation, and analysis

Pandas is used for:

• Loading and handling datasets (CSV, Excel, SQL, etc.)

• Cleaning data (handling missing values, duplicates, etc.)

• Data analysis using DataFrame

• Filtering, grouping, merging datasets

Why it is important?

• Makes raw data usable

• Provides DataFrame, which is like an Excel sheet in Python

• Most important tool for data preprocessing in ML and analytics

• Very easy to use compared to NumPy arrays

3. Matplotlib

Importance: Data Visualization

Matplotlib is used for:

• Creating charts and graphs

• Visualizing patterns and trends

• Understanding data before analysis

[07] CO2 L4

Page 6 of 7

• Creating bar graphs, line charts, scatter plots, histograms, etc.

Why it is important?

• Helps convert numbers into meaningful visuals

• Useful in presentations and reports

• Works well with NumPy and Pandas

• Basis for advanced visualization libraries like Seaborn

(c) Illustrate the concept of data visualization in python?

In today's world, a lot of data is being generated on a daily basis. And

sometimes to analyze this data for certain trends, patterns may become difficult

if the data is in its raw format. To overcome this data visualization comes into

play. Data visualization provides a good, organized pictorial representation of

the data which makes it easier to understand, observe, analyze. In this tutorial,

we will discuss how to visualize data using Python.

Python provides various libraries that come with different features for

visualizing data. All these libraries come with different features and can

support various types of graphs. In this tutorial, we will be discussing four such

libraries.

• Matplotlib

• Seaborn

• Bokeh

• Plotly

Matplotlib

Matplotlib is an easy-to-use, low-level data visualization library that is built on

NumPy arrays. It consists of various plots like scatter plot, line plot, histogram,

etc. Matplotlib provides a lot of flexibility.

Seaborn

Seaborn is a high-level interface built on top of the Matplotlib. It provides

beautiful design styles and color palettes to make more attractive graphs.

Bokeh

Let's move on to the third library of our list. Bokeh is mainly famous for its

interactive charts visualization. Bokeh renders its plots using HTML and

JavaScript that uses modern web browsers for presenting elegant, concise

construction of novel graphics with high-level interactivity.

Plotly

This is the last library of our list and you might be wondering why plotly.

Here's why -

• Plotly has hover tool capabilities that allow us to detect any outliers or

anomalies in numerous data points.

• It allows more customization.

• It makes the graph visually more attractive.

[10] CO2 L3

 Part B - Compulsory (01*10=10 marks) – CASE STUDY

4 Develop a Python program for a calculator that provides a menu with

options to add, subtract, multiply, and divide. The program should allow the

user to choose an operation, enter two numbers, and display the result.

Additionally, the user should have the option to continue using the

calculator or exit the program.

This function adds two numbers

def add(x, y):

 return x + y

This function subtracts two numbers

[10] CO2 L4

Page 7 of 7

def subtract(x, y):

 return x - y

This function multiplies two numbers

def multiply(x, y):

 return x * y

This function divides two numbers

def divide(x, y):

 return x / y

print("Select operation.")

print("1.Add")

print("2.Subtract")

print("3.Multiply")

print("4.Divide")

while True:

 # take input from the user

 choice = input("Enter choice(1/2/3/4): ")

 # check if choice is one of the four options

 if choice in ('1', '2', '3', '4'):

 try:

 num1 = float(input("Enter first number: "))

 num2 = float(input("Enter second number: "))

 except ValueError:

 print("Invalid input. Please enter a number.")

 continue

 if choice == '1':

 print(num1, "+", num2, "=", add(num1, num2))

 elif choice == '2':

 print(num1, "-", num2, "=", subtract(num1, num2))

 elif choice == '3':

 print(num1, "*", num2, "=", multiply(num1, num2))

 elif choice == '4':

 print(num1, "/", num2, "=", divide(num1, num2))

 # check if user wants another calculation

 # break the while loop if answer is no

 next_calculation = input("Let's do next calculation? (yes/no): ")

 if next_calculation == "no":

 break

 else:

 print("Invalid Input")
