CMR

INSTITUTE OF
TECHNOLOGY, BENGALURU

USN

Internal Assesment Test - |

Sub:

Introduction to Python, Data and Control Systems Code:

MBABA313

Date:

05-12-2025 Duration: {90 mins | Max Marks: (50 Sem: [l Branch:

MBA

SET- 11

Marks

OBE

CO RBT

Part A - Answer Any Two Full Questions (2* 20 = 40 marks)

1(a)

State syntax of if—else statements?
Basic Syntax:
if condition:
block of code if condition is True
else:
block of code if condition is False
EX:
age =18
if age >=18:
print("'You are eligible to vote.")
else:
print("'You are not eligible to vote.")
elif (else if)
Used to check multiple conditions.
marks = 85
if marks >=90:
print("Grade: A")
elif marks >= 75:
print("Grade: B")
else:
print("Grade: C")
» Use colons (:) at the end of if, elif, and else.
» Indentation (usually 4 spaces) is required for the code blocks.

[03]

CO1 L1

(b)

Write a Python program to check whether the user-given number is odd or
even.
Program to check if a number is odd or even

num = int(input("Enter a number: "))
if num % 2 ==0:

print(num, "is Even™)
else:

print(num, "is Odd")

Enter a number: 2
2 1s an Even number.

Enter a number: 5
5 is an Odd number.

[07]

COo1 L3

Page 1 of 7

(©)

Apply the concepts of conditional, alternate and chained executions for
grading student performance based on marks.

Below is a Python program that uses conditional, alternate, and chained
executions to grade student performance based on marks.

Program to grade student performance using conditional, alternate, and
chained execution

marks = float(input("Enter the student's marks (0—100): "))

Conditional execution
if marks < 0 or marks > 100:
print("Invalid marks! Please enter a value between 0 and 100.")

Alternate execution
elif marks >= 90:
print("Grade: A+ (Excellent)™)

Chained execution (elif)
elif marks >= 80:
print("Grade: A (Very Good)")
elif marks >=70:
print("Grade: B (Good)")
elif marks >= 60:
print("Grade: C (Average)")
elif marks >= 50:
print("Grade: D (Pass)")
else:
print("Grade: F (Fail)")

[10]

CO1

L3

2(a)

State the working of a Python ‘break’ statement.
The break statement in Python is used to immediately stop a loop (either for
or while) and exit from it, even if the loop condition is still true.
What break Does

o Stops the loop instantly.

« Control moves to the first statement after the loop.
Example 1: Using break in a for loop
for i in range(1, 10):
if i ==5:

break

print(i)
Output:
1
2
3
4

[03]

COo1

L1

(b)

Illustrate the concept of operator precedence in Python.
Operator precedence in Python determines which operators are evaluated first
in an expression.
Just like in mathematics (where multiplication happens before addition), Python
also follows a hierarchy.
Operator Precedence (Highest to Lowest)
Here is a simplified hierarchy:
1. Parentheses — ()

[07]

COo1

L3

Page 2 of 7

Exponents — **

Unary operators — +X, -X, ~X

Multiplication / Division / Floor division / Modulus — *, /, //, %
Addition / Subtraction — +, -

Relational operators — <, <=, >, >=

Equality operators — ==, I=

Logical NOT — not

Logical AND — and

10 Logical OR — or

Example of Operator Precedence

©EOND O A WN

result 3

(©)

Outline the importance of operators in python with examples.

Python has the following types of operators:
1. Arithmetic Operators
Used for mathematical operations.

Operator Meaning Example
+ Addition 5+3=8
- Subtraction 9-4=5
* Multiplication 6*2=12
/ Division 8/2=40
% Modulus (remainder) 10% 3 =1
*k Exponent (power) 2**3=8
Il Floor division 7112=3
v Example:

a=10

b=3

print(a + b) # 13

print(a-b) #7

print(a* b) # 30

print(a/b) # 3.3333

print(a%b) #1

print(a ** b) # 1000

print(a// b) # 3

2. Comparison (Relational) Operators

Used to compare values. Result is either True or False.

Operator Meaning Example

Operators are special symbols that perform operations on variables and values.

[10]

CO1

L4

Page 3 of 7

== Equal to ==5— True

I= Not equal to 51=3 — True
> Greater than 6>2— True
< Less than 3<7— True
>= Greater or equal 6 >= 6 — True
<= Lessorequal 4<=5—True

3. Logical Operators
Used to combine conditions.

Operator Meaning
and True if both conditions are True

not Reverses the condition

4. Assignment Operators
Used to assign and update values.

/= Floor divide and assign x //= 4

5. Bitwise Operators
\Work on bits (0s and 1s).

Operator Meaning

& AND

N XOR

~ NOT

<< Left shift
>> Right shift

6. Membership Operators

Operator Meaning
in True if value present
not in True if value not present

Example
(5>3and 8 > 6) — True

or True if at least one condition is True (5> 10 or 3 <8) — True

not(5 > 3) — False

Operator Meaning Example

= Assign x =10

+= Add and assign X+=5(Xx=x+5)
-= Subtract and assign X -=

*= Multiply and assign ~ x *=2

/= Divide and assign X/[=2

%= Modulus and assign X %= 3

*hz Power and assign X **=2

Used to check membership in sequences (list, string, etc.)

3(a)

Difference between data cleaning and data analysis?

| Feature || Data Cleaning Data Analysis |
Process of fixing or removing|[Process of examining cleaned
Meaning incorrect, incomplete, or data to find patterns, insights,
inconsistent data. and conclusions.
. Make decisions, answer
Improve data quality so . .
Purpose . questions, and find
analysis becomes accurate. : .
meaningful insights.

[03]

CO2

L1

Page 4 of 7

Understanding and

Focus Removing errors. interpreting data.

Handling missing values,

Activities removing duplicates, Applying statistical methods,

visualizations, trends,

involved correcting errors, formatting L
predictions, and reports.

data.

Excel, Python (Pandas), Excel, Python, Power BI,
Tools used Power BI, SQL. Tableau, R.

Clean, structured, error-free ||Charts, insights, reports,
Output)

dataset. predictions.
When Before data analysi After data cleani
performed? efore data analysis. er data cleaning.

Removing rows with missing
Example age, fixing spelling errors
(“Bananaa” — “Banana”).

Finding which fruit is sold the
most each month.

(b)

What is a python library? Outline the importance of Pandas, NumPy and
Matplotlib.
/A Python library is a set of ready-made tools that help you do specific tasks
easily.
Example: Instead of writing your own code for math calculations or data
analysis, you can use a library.
1. NumPy (Numerical Python)
Importance: Foundation for scientific computing
NumPy is used for:
« Fast mathematical and numerical operations
o Handling large multi-dimensional arrays
e Performing matrix operations
e Serving as a base for many other libraries (Pandas, SciPy, Scikit-learn)
\Why it is important?
e Much faster than Python lists
e Supports vectorization (performing operations on entire arrays at once)
« Provides built-in mathematical functions
o Essential for machine learning calculations
2. Pandas
Importance: Data cleaning, manipulation, and analysis
Pandas is used for:
e Loading and handling datasets (CSV, Excel, SQL, etc.)
e Cleaning data (handling missing values, duplicates, etc.)
« Data analysis using DataFrame
e Filtering, grouping, merging datasets
\Why it is important?
o Makes raw data usable
o Provides DataFrame, which is like an Excel sheet in Python
e Most important tool for data preprocessing in ML and analytics
e Very easy to use compared to NumPy arrays
3. Matplotlib
Importance: Data Visualization
Matplotlib is used for:
o Creating charts and graphs
e Visualizing patterns and trends
« Understanding data before analysis

[07]

CO2

L4

Page 5 of 7

o Creating bar graphs, line charts, scatter plots, histograms, etc.
Why it is important?

e Helps convert numbers into meaningful visuals

o Useful in presentations and reports

e Works well with NumPy and Pandas

« Basis for advanced visualization libraries like Seaborn

(©)

Illustrate the concept of data visualization in python?

In today's world, a lot of data is being generated on a daily basis. And
sometimes to analyze this data for certain trends, patterns may become difficult
if the data is in its raw format. To overcome this data visualization comes into
play. Data visualization provides a good, organized pictorial representation of
the data which makes it easier to understand, observe, analyze. In this tutorial,
we will discuss how to visualize data using Python.

Python provides various libraries that come with different features for,
visualizing data. All these libraries come with different features and can
support various types of graphs. In this tutorial, we will be discussing four such
libraries.

Matplotlib

Seaborn

Bokeh

Plotly

Matplotlib
Matplotlib is an easy-to-use, low-level data visualization library that is built on
NumPy arrays. It consists of various plots like scatter plot, line plot, histogram,
etc. Matplotlib provides a lot of flexibility.
Seaborn
Seaborn is a high-level interface built on top of the Matplotlib. It provides
beautiful design styles and color palettes to make more attractive graphs.
Bokeh
Let's move on to the third library of our list. Bokeh is mainly famous for its
interactive charts visualization. Bokeh renders its plots using HTML and
JavaScript that uses modern web browsers for presenting elegant, concise
construction of novel graphics with high-level interactivity.
Plotly
This is the last library of our list and you might be wondering why plotly.
Here's why -
e Plotly has hover tool capabilities that allow us to detect any outliers or
anomalies in numerous data points.
e It allows more customization.
e It makes the graph visually more attractive.

[10]

CcO2

L3

Part B - Compulsory (01*10=10 marks) — CASE STUDY

Develop a Python program for a calculator that provides a menu with
options to add, subtract, multiply, and divide. The program should allow the
user to choose an operation, enter two numbers, and display the result.
Additionally, the user should have the option to continue using the
calculator or exit the program.

This function adds two numbers
def add(X, y):
return X +y

This function subtracts two numbers

[10]

CcO2

L4

Page 6 of 7

def subtract(x, y):
return X - y

This function multiplies two numbers
def multiply(x, y):
return x *y

This function divides two numbers
def divide(X, y):
return x /'y
print("Select operation.")
print("1.Add")
print(*'2.Subtract™)
print("3.Multiply™)
print("4.Divide")

while True:
take input from the user
choice = input("Enter choice(1/2/3/4): ™)

if choice in ('1', '2','3', '4):
try:

check if choice is one of the four options

num1l = float(input("Enter first number: ™))

num2 = float(input("Enter second number: "))
except ValueError:

print("Invalid input. Please enter a number.")

continue

if choice =="1"
print(numl, "+", num2, "=", add(hum1, num2))

elif choice == 2"

print(numl, "-", num2, "=", subtract(numl, num2))
elif choice =="3"
print(numl, "*", num2, "=", multiply(numZ1, num2))

elif choice == '4";
print(numi, "/", num2, "=", divide(num1, numz2))

check if user wants another calculation
break the while loop if answer is no
next_calculation = input(*“Let's do next calculation? (yes/no):)
if next_calculation == "no":
break

else:

print("Invalid Input")

*kkkk

Page 7 of 7

