CMR

INSTITUTE
OF
TECHNOLOGY USN
Internal Assessment Test 1 — Nov 2025
Sub: Rich Internet Application Development CSolijt;' MMCB311B
Date: 06.11.25 [Duration: ‘ 90 min’s | Max Marks: ‘ 50| Sem: ‘ 111 | Branch: MCA
OBE
Note : Answer FIVE FULL Questions, choosing ONE full question from each Motif2KS
CO | RBT
PART I coll L2
1 Explain Rich Internet Applications (RIA) and their evolution. [10]
OR
2 Compare RIAs with traditional web apps in performance and interactivity. [10] col L3
PART I [10] [co1| L1
3 Describe the architecture of a Rich Internet Application (RIA). Explain the
role of client-side and server-side components with a suitable diagram.
[10] |co1| L1
OR
4 Describe JavaScript Promises in detail.
PART 111
5 Describe JSX in React.js. [10] |co2| L1
OR
6 Describe the architecture of a SPA. Explain the concepts of routing and lifecycle in
SPA development. [10] |CO2| L1
PART IV
7 Discuss the benefits and challenges of using SPAs in modern web development. [10] |CO2| L1
Give examples of popular SPA frameworks.
OR
8 Discuss the roles of components, props, and state in building interactive user [10] |CO2| L1
interfaces.
PART V
9 Explain the Fetch API in modern JavaScript. [10] |CO3| L2
OR
10 Discuss the concept of asynchronous communication in web applications. How [10] |CO3| L1
does it help in building responsive SPAS?

Page 1 of

SOLUTIONS

1 Explain Rich Internet Applications (RIA) and their evolution.

The Internet was originally designed for simply transporting documents and infor- mation. Simple
web sites were composed of text documents interconnected through hyper-links. The main
purpose of this static collection of HTML web pages was to display preformatted text. As the
traditional Web relied heavily on a few in- terface controls, like combo boxes, buttons and forms it

offered only a low degree of interactivity.

Communication with a server in the course of requesting or updating data is limited to
synchronous HTTP calls resulting in a full page refresh. The bulk of business logic is placed in the
middle tier (the server). In typical implementations, the client elements of traditional browser-

based applications are limited to the interface logic (for example, HTML) with small amounts of

script code (such as JavaScript) for minor data validation and control logic.

Classic web applications are often preferred for the following reasons:

e Standardized tags/scripts are easy to develop.

e No installation or updates necessary.

e Applications are accessible from networked computers.
e Applications can run on different operating systems.

e User interface (UI) is simple and standardized.

Nevertheless, seamless interaction has never been the strong suit of HTML appli- cations. Since a
full-page refresh is usually needed to change any part of the dis- play, the ability of HTML-based
applications to offer responsive feedback needed to deliver a truly seamless experience is limited.

RIAs are designed to enable the Web to evolve beyond the page based, document- centric
metaphor commonly associated with the browser approach. Figure 2 shows the evolution from

web application to RIA and the synergies it combines.

Page 2 of

Interne §
Application

Business Logic

Server-side Evolution [EGGNGY»

Rich
Content

Graphics
AudioNideo

»

3 Client-side Evolution TGN »

2 Compare RIAs with traditional web apps in performance and interactivity.

Feature Desktop Applications Web Applications Rich Internet Applications (RIAS)
Definition Installed software that | Applications accessed Web apps with desktop-like interactivity
runs directly on a through a web browser | and responsiveness.
computer (offline). over the internet.
Installation Requires installation on | No installation needed, | Runs in browser, sometimes needs plug-
each device. just a browser. ins or advanced frameworks.
Platform OS-dependent Platform-independent Platform-independent but requires modern
Dependency (Windows, Mac, Linux | (runs on any device with | browsers.
versions needed). a browser).
Performance High performance Slower compared to Faster than web apps due to client-side
(direct use of system desktop apps (depends processing.
resources). on internet speed).
User Interface | Rich, responsive, Basic, often less Rich, interactive, similar to desktop apps
un supports offline interactive. (animations, drag-drop, etc.).
features.
Connectivity Mostly works offline. Requires constant Can work online, and sometimes offline
internet connection. with caching/local storage.

Page 3 of

Maintenance & | Must update on each Updates are done on Updates happen centrally (like web apps),
Updates device manually. server, instantly but with richer features.
available to all users.

Examples MS Word, Photoshop, | Online banking portals, = Google Docs, Gmail, Google Maps,
VLC Player. Wikipedia, Facebook. Netflix.

3. Describe the architecture of a Rich Internet Application (RIA). Explain the role of client-side and server-side
components with a suitable diagram

Architecture of RIA

Presentation layer - contains Ul and presentation logic components

« Business layer - contains business logic, business workflow and business
entities components

« Data layer — Contains data access and service agent components.

* Itis common in RIAs to move some of business processing and even the
data access code to the client.

» The client may in fact contain some or all of the functionality of the
business and data layers, depending on the application scenario.

Ul components
» Users can interact with the application
* Format data and render data to users
» Acquire and validate data

Application facade
* To combine multiple business operations into single message-based operation

» The facade can be accessed from the presentation layer using a range of
communication technologies.

Data access logic components

» Abstract the logic needed to access the underlying data stores.

Page 4 of

» This centralizes data access functionality, makes it easier to configure and maintain.

Data helpers/utilities
Rich Internet Application
(Client)
Plug-in Execution Container
w| -2 Richul | | m-c-ema
i 4 1 Engine g E
= |, Presentation | Few=== ! Isolated '
ol Layer i ¢ Business % | Storage \
E L i | Processing E, i
L - - ‘—Eomponents, [- -
. J
- ~ [™
Web Server NN
fﬂu N
Y
Ez Service Interfaces Message Types -
= 9 =
= 4 £ s || 5
(e -) El =l sl &
7 \ = o
v Application Facade il 5 = B
gﬁ L feparon SR 4 @ IR
w1 =
= E
vi 5 Business Business Business E % 3
a Worlflow Components Entities b]
. J &
4 N
ﬁg Data Access Data [-1_e_|pers;" Service
55 Components Utilities Agents AN A,
_ -~ '\- J

A

4
S j
Data 1
Sources D Services

* For centralizing generic data access functionality (managing db connection
and caching data).

« Data source specific helper components can be designed to abstract the
complexity of accessing the db.

« Service Agents — Basic mapping between the format of the data exposed by
the service and the format your application needs.

» Business components — implement the business logic of the application.
Implement business rules and perform business tasks.

» Business workflows — Define and coordinate long running, multistep
business processes. They can be implemented using business process
management tools.

» Design considerations

» Choose an appropriate technology based on application requirements.(eg .
Windows Forms, OBA, WPF)

» Separate presentation logic from interface implementation
- Eases maintenance
- Promotes reusability
- Improves testability

 Identify the presentation tasks and presentation flows

Page 5 of

- Helps to design each screen and each step-in multi-screen or
wizard Processes.

» Design to provide a suitable and usable interface

- Features like layout, navigation, choice of controls to
maximize accessibility and usability.
» Extract business rules and other tasks not related to the interface.

* Reuse common presentation logic — (Libraries that contain templates,
generalized client- side validation functions and helper classes)

» Loose couple your client from any remote services it uses.

4. Describe JavaScript Promises in detail.

Application: Handling asynchronous operations more effectively and avoiding "callback hell."

Promises represent the eventual completion (or failure) of an asynchronous operation and its resulting
value.

They provide a cleaner way to chain asynchronous operations using .then() for successful outcomes
and .catch() for error handling, improving the readability and manageability of asynchronous code.

A JavaScript Promise is an object representing the completion or failure of an asynchronous operation
and its values.

It is a placeholder for a value that may not yet be available, providing a structured way to handle
asynchronous code.

Promise Syntax

A Promise is an object that represents the eventual completion (or failure) of an asynchronous operation
and its resulting value.

const myPromise = new Promise(function(myResolve, myReject) {
/["Producing Code" (May take some time)

myResolve(); // when successful
myReject(); // when error

i

/["Consuming Code" (Must wait for a fulfilled Promise).
myPromise.then(

function(value) { /* code if successful */ },
function(error) { /* code if some error */ }

);
Example Using a Promise

const myPromise = new Promise(function(myResolve, myReject) {
setTimeout(function() { myResolve("I love You !"); }, 3000);

H

Page 6 of

myPromise.then(function(value) {
document.getElementByld("demo™).innerHTML = value;

IOk

5. Describe JSX in React.js.

JSX can refer to JavaScript XML, a syntax extension for JavaScript used in web development, most

notably with the React framework, or to JSX (JSX.com), a company that provides public charter air travel. For
web development, JSX is a syntax extension that allows you to write HTML-like code within JavaScript to
easily describe user interfaces. The company JSX offers a "nearly private jet" experience, which is an
alternative to traditional air travel.

In web development (JavaScript XML)

What it is: JSX is a syntax extension for JavaScript that makes it easier to write and visualize Ul
components, as it allows you to write markup that looks like HTML directly in your JavaScript code.

How it works: It is transformed into regular JavaScript function calls by a transpiler. For example, link in JSX is turned into React.createElement(a’, {href:
‘https://www.reactjs.org'}, ' link).

Key features:

o Embedding expressions: You can embed any valid JavaScript expression inside curly braces,
like {name}.

o Attributes: You can use quotes for string literals as attributes, like href="https://www.reactjs.org".
o Children: JSX tags can contain other tags or text as children, such as <div> <p>Hello</p> </div>.

o XML rules: JSX follows XML rules, meaning that elements must be properly closed and there
must be a single top-level parent element in a return statement.

6. Describe the architecture of a SPA. Explain the concepts of routing and lifecycle in SPA development.

Single Page Application (SPA) has become a popular design pattern for building fast, interactive, and seamless
user experiences. Unlike traditional web applications that reload entire pages upon interaction, SPAs
dynamically load content without refreshing the page. This creates a smoother, more fluid experience for users.
In this article, we’ll dive deep into what Single Page Apps are, how they work, their advantages, and why
they’ve become a preferred choice for modern web development.

What is a Single Page Application?

A Single Page Application (SPA) is a type of web application or website that interacts with the user by
dynamically rewriting the current page, rather than loading entire new pages from the server. When a user
interacts with an SPA, only the necessary data is fetched and updated, eliminating the need for page reloads.
Key Characteristics of SPAs

No Page Reloads: SPAs load once, and after that, only specific content changes without full page reloads.
Asynchronous Data Fetching: SPAs fetch data in the background using APIs (e.g., RESTful or GraphQL
APIs) and display it without refreshing the page.

Dynamic Content: SPAs update content based on user interactions, such as clicks, form submissions, or
navigation within the app, all while maintaining the same page structure

Architecture of Single Page Application

Page 7 of

https://www.google.com/search?q=React+framework&rlz=1C1CHBD_enIN1034IN1034&oq=JSX+&gs_lcrp=EgZjaHJvbWUqBwgAEAAYjwIyBwgAEAAYjwIyBwgBEAAYgAQyBwgCEAAYgAQyBwgDEAAYgAQyBggEEEUYOTIHCAUQABiABDIHCAYQABiABDIHCAcQABiABDIHCAgQABiABDIHCAkQABiABNIBCTc1OTZqMGoxNagCCLACAfEFImKT_prbP-nxBSJik_6a2z_p&sourceid=chrome&ie=UTF-8&mstk=AUtExfBqR2BbafBD0lPFOefxCWLad3b7H4iMtkHylkznGf_gfIeIapl1nu0NW7xJ8Ok6aQUY6cEYKLY6Nez6RaS7qYNHZi6A6LxIoOkQogU4p_1kUazROVz07fU7cqf3GMBHhpLyMgq1umVl3TwGTMhuRjG_FndwM5lSSNLGavZFMpgAWsw&csui=3&ved=2ahUKEwjTrMnvmoWRAxWHbmwGHdMDHGsQgK4QegQIARAC
https://www.geeksforgeeks.org/node-js/rest-api-introduction/

The architecture of a Single Page Application (SPA) is designed to provide a smooth, dynamic user experience
by minimizing page reloads. Unlike traditional web applications, SPAs load a single HTML page and
dynamically update the content as users interact with the app.

Here's a breakdown of the key components that make up an SPA's architecture:

1. Client-Side (Frontend)

N

4

(62}

Initial Load: The initial HTML, CSS, and JavaScript files are loaded once. After that, the application
updates dynamically without refreshing the page.

JavaScript Framework/Library: Frameworks like React, Angular, or Vue.js handle routing, state
management, and rendering of components.

Routing: Client-side routing enables navigation within the app without reloading the page. Libraries
like_React Router or Vue Router handle this routing.

State Management: SPAs use state management solutions like Redux or Vuex to manage and share the
application’s state across different components.

. Server-Side (Backend)

APl Communication: SPAs rely on asynchronous requests to fetch data from the server
using AJAX or Fetch API, rather than reloading the entire page.

Backend Frameworks: Server-side frameworks like Express.js, Django, or Node.|s provide the necessary
APIs and business logic for the app.

. Data Flow

Initial Load: The client loads the necessary HTML, CSS, and JavaScript files once.

Dynamic Updates: When a user interacts with the app (clicks a button or submits a form), JavaScript
fetches the necessary data via APIs and updates the Ul accordingly.

State Updates: The frontend manages state and updates the Ul based on data fetched from the backend,
ensuring a smooth experience without page reloads.

. Routing and Navigation

Client-Side Routing: SPAs use client-side routing to manage URL changes, enabling users to navigate
between different views without reloading the page. The History API allows for seamless URL updates and
maintaining browser history.

. Caching and Performance Optimization

Lazy Loading and Code Splitting: SPAs optimize performance by loading only the necessary resources for
the current page view, reducing initial load time and improving responsiveness.

Service Workers: Service workers help cache assets and enable offline functionality, improving
performance and user experience.

Architechture Of SPA

HT‘SD‘::;’;)g — > UIHTML/CSS
!
Application - Navigation
Layer JavaScript APIs
!
Data Services Data Access

JSON/XML <t <« Offline Storage

Layer JavaScript
1 ! Browser App
. Sereer = (Client)

Page 8 of

https://www.geeksforgeeks.org/html/html-tutorial/
https://www.geeksforgeeks.org/css/css-tutorial/
https://www.geeksforgeeks.org/javascript/javascript-tutorial/
https://www.geeksforgeeks.org/reactjs/react/
https://www.geeksforgeeks.org/angular-js/angular-tutorial/
https://www.geeksforgeeks.org/javascript/vue-js/
https://www.geeksforgeeks.org/reactjs/reactjs-router/
https://www.geeksforgeeks.org/javascript/exploring-the-new-vue-router-navigating-your-vuejs-app-with-ease/
https://www.geeksforgeeks.org/reactjs/react-redux-tutorial/
https://www.geeksforgeeks.org/javascript/vue-js-vuex/
https://www.geeksforgeeks.org/javascript/ajax-introduction/
https://www.geeksforgeeks.org/javascript/javascript-fetch-method/
https://www.geeksforgeeks.org/node-js/express-js/
https://www.geeksforgeeks.org/node-js/nodejs/

Single-Page Applications (SPAs) offer a dynamic and app-like experience within a web browser by dynamically
rewriting the current page rather than loading entire new pages. This approach comes with both significant
benefits and notable challenges in modern web development.

7. Discuss the benefits and challenges of using SPAs in modern web development. Give examples of popular
SPA frameworks

Benefits of SPAs:
Improved User Experience:

SPAs provide a smoother, more fluid user experience by eliminating full page reloads, resulting in faster
transitions and a more responsive interface akin to a native application.

Faster Performance:

Once the initial load, subsequent interactions often involve only data exchange, leading to quicker content updates
and reduced server requests.

Reduced Server Load:

By shifting much of the rendering and logic to the client-side, SPAs can significantly decrease the load on the
server.

Offline Capabilities:

With the use of service workers and caching mechanisms, SPAs can offer limited or full offline functionality,
enhancing user experience in low-connectivity environments.

Easier Debugging:
Modern SPA frameworks often come with robust developer tools, making it easier to debug client-side issues.

Challenges of SPAs:
SEO Challenges:

Dynamic content loading via JavaScript can make it harder for search engine crawlers to fully index the content,
potentially impacting search engine optimization (SEO).

Initial Load Time:

The initial download of a larger JavaScript bundle can lead to a slower first load compared to traditional multi-
page applications, especially on slower networks.

JavaScript Dependency:

SPAs heavily rely on JavaScript. If JavaScript is disabled or fails to load, the application may not function
correctly, or at all.

Security Risks:

Client-side rendering can introduce security vulnerabilities if not properly secured, as malicious code injection can
occur within the browser.

Browser History and Analytics:
Managing browser history and accurately tracking user behavior for analytics can be more complex in SPAs
compared to traditional websites.

Popular SPA Frameworks:

Page 9 of

ReactJS:
A JavaScript library for building user interfaces, known for its component-based architecture and virtual DOM.
Angular:

A comprehensive, opinionated framework developed by Google, providing a structured approach to building
complex SPAs.

Vue.js:

A progressive framework known for its ease of learning and flexibility, often chosen for its balance of features and
simplicity.
Svelte:

A newer framework that compiles components into highly optimized vanilla JavaScript at build time, leading to
smaller bundle sizes and faster performance.

8. Discuss the roles of components, props, and state in building interactive user interfaces

Components are reusable building blocks for an interface, props are read-only data passed from parent to child
components, and state is internal, mutable data that a component manages itself to control its behavior and re-
render when it changes. Together, they form the foundation for building dynamic and interactive user interfaces by
creating modular structures and managing data flow between different parts of the application.

Components
Role: To act as reusable, independent building blocks that encapsulate a piece of the Ul.

Function: Components break down a complex user interface into smaller, more manageable, and isolated pieces,
such as buttons, forms, or entire pages.

Example: A Button component can be used multiple times throughout an application, with different text and
styles, but its core functionality remains the same.

Props

Role: To pass data down from a parent component to a child component.

Function: Props allow parent components to configure and customize their children. They are read-only from the

child's perspective, meaning a child component cannot change the props it receives.

Example: A Greeting component might receive a name prop from its parent to display a personalized greeting

like "Hello, [Name]!". The name value is passed in from the parent, not managed by the Greeting component

itself.

State
Role: To manage a component's internal, dynamic data.

Function: State is the data that can change over time within a component in response to user interactions or other
events. When state changes, the component re-renders to reflect the new data. It is a component's private memory.

Page 10 of

Example: A Counter component would use state to keep track of its current number. When a user clicks a button,
the state (the number) is updated, causing the component to re-render and display the new, incremented value.

9. Explain the Fetch API in modern JavaScript.

The Fetch API in modern JavaScript provides a powerful and flexible interface for making network requests, such
as fetching resources from servers. It is a promise-based alternative to the older XMLHttpRequest and offers a
cleaner, more intuitive way to handle asynchronous operations.

Core Concepts:

fetch() method:

The global fetch() method initiates a network request. It takes two arguments:
resource: The URL of the resource to fetch (a string or a Request object).

options (optional): An object to configure the request, including properties like method (GET, POST,
etc.), headers, and body.
Promises:

fetch() returns a Promise that resolves with a Response object when the request completes (even if it'san HTTP
error like 404 or 500). The promise only rejects if there's a network error.

Response object:

This object represents the server's response and contains information like status, statusText, and headers. It also
provides methods to extract the response body in various formats:

response.json(): Parses the response body as JSON.

response.text(): Parses the response body as plain text.
response.blob(): Parses the response body as a Blob.

response.arrayBuffer(): Parses the response body as an ArrayBuffer.

Basic Usage:
JavaScript
fetch('https://api.example.com/data’)
.then(response => {
/I Check if the response was successful (e.g., status code 200-299)
it (Iresponse.ok) {
throw new Error(HTTP error! status: ${response.status});

¥

return response.json(); // Parse the response body as JSSON

1)
.then(data => {

console.log(data); // Process the fetched data

)

.catch(error => {
console.error('There was a problem with the fetch operation:', error);

i

Making POST Requests:
JavaScript

Page 11 of

const postData = {
title: 'My New Post',
body: 'This is the content of my new post.’,
userld: 1,

};

fetch('https://api.example.com/posts’, {
method: 'POST",
headers: {
'‘Content-Type": "application/json’,
}
body: JSON.stringify(postData), // Convert the data to a JSON string
by,

.then(response => response.json())
.then(data => console.log(data))
.catch(error => console.error('Error:', error));
Key Advantages:
Promise-based: Simplifies asynchronous code and error handling compared to callbacks.

Cleaner syntax: More readable and concise than XMLHttpRequest.
Modern features: Integrates well with other modern web features like Service Workers and CORS.
Flexibility: Allows for easy configuration of requests with various options.

10. Discuss the concept of asynchronous communication in web applications. How does it help in building
responsive SPAs?

Asynchronous communication in web applications refers to a pattern where a client (typically a web browser)
sends a request to a server and continues with other tasks without waiting for an immediate response. The server
processes the request independently and sends a response back to the client at a later time, or when the requested
operation is complete. This contrasts with synchronous communication, where the client blocks and waits for the
server's response before proceeding.

How it helps in building responsive Single-Page Applications (SPAS):

Asynchronous communication is fundamental to building responsive SPAs by preventing the user interface from
freezing or becoming unresponsive during data fetching or other long-running operations.

Non-blocking Ul:

When an SPA needs to fetch data from an API (e.g., loading a list of products, submitting a form), an
asynchronous request allows the main thread of the browser to remain available for user interaction. The user can
continue navigating, clicking buttons, or scrolling while the data is being retrieved in the background.

Improved User Experience:

Users perceive the application as faster and more fluid because they are not forced to wait for every server
interaction. This leads to a more engaging and less frustrating experience.

Efficient Resource Utilization:

Asynchronous operations can be initiated in parallel, allowing multiple data requests to be made
concurrently. This can significantly reduce the overall loading time of the application and improve efficiency.

Dynamic Content Updates:

SPAs often rely on dynamically updating parts of the page without full page reloads. Asynchronous
communication facilitates this by allowing specific data to be fetched and rendered into the DOM without
interrupting the user's current view.

Page 12 of

Common mechanisms for asynchronous communication in web applications:
XMLHttpRequest (XHR):

The traditional method for making asynchronous HTTP requests in JavaScript.
Fetch API:

A modern, promise-based alternative to XHR, offering a more powerful and flexible way to make network
requests.

WebSockets:

Provide a persistent, full-duplex communication channel between the client and server, enabling real-time data
exchange.

Server-Sent Events (SSE):
Allow the server to push updates to the client over a single HTTP connection.

Page 13 of

Page 14 of

Page 13 of

Page 14 of

