

Internal Assessment Test I – Dec 2025

Sub:	Database Management Systems - Solution	Sub Code:	MMC103
-------------	---	------------------	---------------

Note: Answer FIVE FULL Questions, choosing ONE full question from each Module

PART I

1 Explain the components of a DBMS and their functions.
OR
2 Examine participation constraints in the ER model. Differentiate between total and partial participation.

MARKS	OBE	
	CO	RBT
[10]	CO1	L1
[10]	CO1	L3
[10]	CO2	L2
[10]	CO2	L2

PART II

3 Define the Entity–Relationship (ER) Model. Explain its components.
OR
4 What are views of data? Explain the external, conceptual, and internal views with examples.

PART III

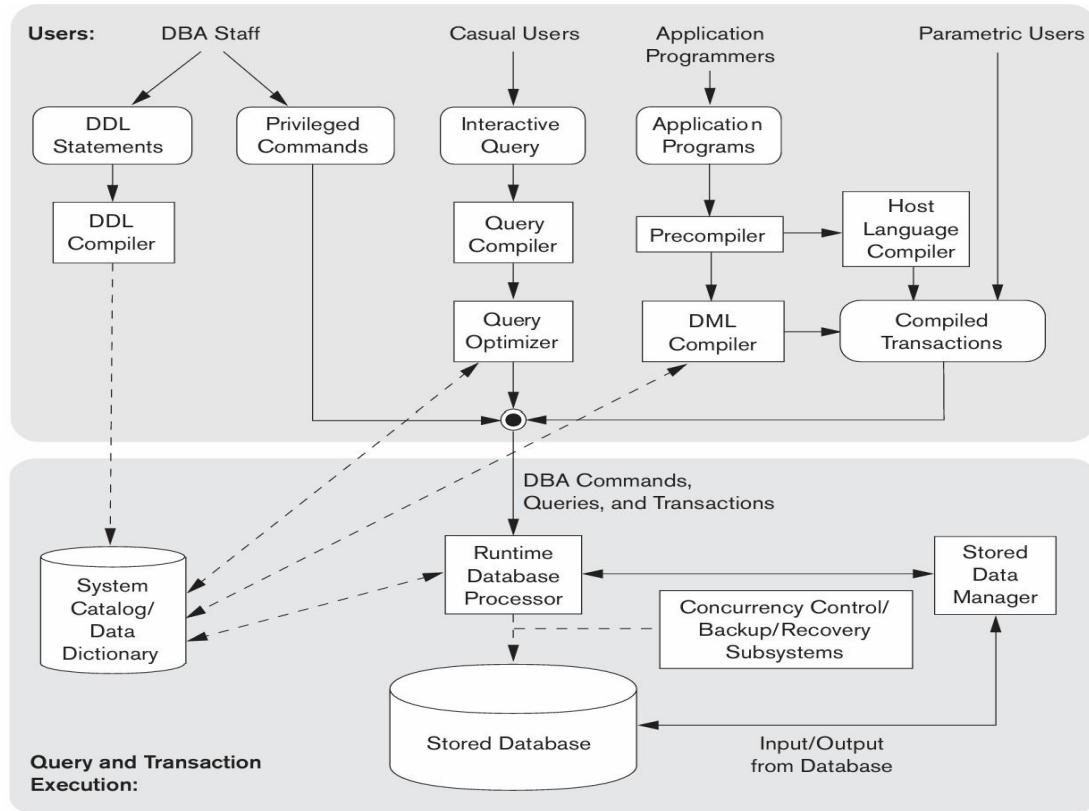
5 Draw an ER diagram for a **Library Management System** showing:
a. BOOK, MEMBER, ISSUE
b. Weak entity if any
c. Relationship attributes
OR

[10]	CO2	L3
[10]	CO2	L2

6 Describe the set operations in relational algebra.

[10]	CO2	L2
[10]	CO2	L2
[10]	CO2	L2

PART IV


7 Differentiate between the ER Model and Relational Model.
OR
8 Discuss the different types of keys in the relational model with examples

[10]	CO1	L1
[10]	CO2	L3

PART V

9 Explain the SELECT and PROJECT operations in relational algebra with detailed examples.
OR
10 Demonstrate the structure of SQL and classify SQL commands with examples.

Q1. Explain the components of a DBMS and their functions.

1. DDL Statements

Used by DBA staff

Commands like CREATE, ALTER, DROP

Define the structure of the database

2. DDL Compiler

Converts DDL statements into internal form

Stores metadata into the System Catalog / Data Dictionary

3. Privileged Commands

Used only by DBA

Include:

Grant/revoke permissions

Backup and recovery commands

Performance tuning commands

4. System Catalog / Data Dictionary

Central repository of metadata

Stores:

Table names

Attribute types

Constraints

User permissions

Consulted during query processing and execution

5. Interactive Query

SQL queries issued by casual users

Example:

`SELECT * FROM STUDENT;`

6. Query Compiler

Parses SQL queries

Checks syntax and semantics

Converts query into an internal representation

7. Query Optimizer

Selects the most efficient execution plan

Decides:

Which index to use

Order of operations

Improves performance

8. Application Programs

Written by application programmers

Contain embedded SQL statements

Example: Java + SQL

9. Precompiler

Extracts SQL from application programs

Separates SQL and host language code

10. DML Compiler

Compiles DML commands (SELECT, INSERT, UPDATE, DELETE)

Converts them into low-level database instructions

11. Host Language Compiler

Compiles the remaining application code (Java, C, etc.)

Produces executable programs

12. Compiled Transactions

Precompiled and stored queries

Used by parametric users

Example: ATM withdrawal, ticket booking

13. Runtime Database Processor

Executes:

Queries

Transactions

DBA commands

Acts as the core execution engine

14. Concurrency Control / Backup / Recovery Subsystems

Ensure:

Concurrency control (multiple users at same time)

Transaction atomicity

Recovery after failure

15. Stored Data Manager

Manages actual data storage

Handles:

File access

Indexes

Disk I/O operations

16. Stored Database

Actual data stored on disk

Includes tables, indexes, and records

17. Input / Output from Database

Data transferred between disk and memory

Controlled by Stored Data Manager

Q2. Explain participation constraints in the ER model.

Participation constraint specifies whether all or some entity instances participate in a relationship.

Types of Participation

1. Total Participation

- Every entity **must participate** in the relationship.
- Represented using **double lines** in ER diagram.

Example:

Every EMPLOYEE must work in a DEPARTMENT.

2. Partial Participation

- Some entities **may not participate** in the relationship.
- Represented using **single line**.

Example:

Not all STUDENTs enroll in HOSTEL.

Difference Table

Aspect	Total Participation	Partial Participation
Mandatory	Yes	No
ER Notation	Double line	Single line
Example	Employee–Department	Student–Hostel

Q3. Define ER Model and explain its components.

The ER Model is a conceptual data model used to represent real-world objects and their relationships.

Components of ER Model

1. Entity
 - Real-world object (Student, Employee).
 - Represented by a rectangle.

2. Entity Set
 - Collection of similar entities.

3. Attributes
 - Properties of entities.
 - Types:
 - Simple
 - Composite
 - Derived
 - Multivalued

4. Key Attribute
 - Uniquely identifies an entity.
 - Example: Roll No.

5. Relationship

- Association between entities.
- Represented by diamond.

6. Relationship Set

- Collection of similar relationships.

7. Cardinality

- One-to-One
- One-to-Many
- Many-to-Many

Q4. Views of Data – External, Conceptual, Internal.

Views of data describe how data is perceived at different abstraction levels.

Three-Schema Architecture

1. External View

- User-specific view.
- Shows required data only.

Example:

Student sees only marks and attendance.

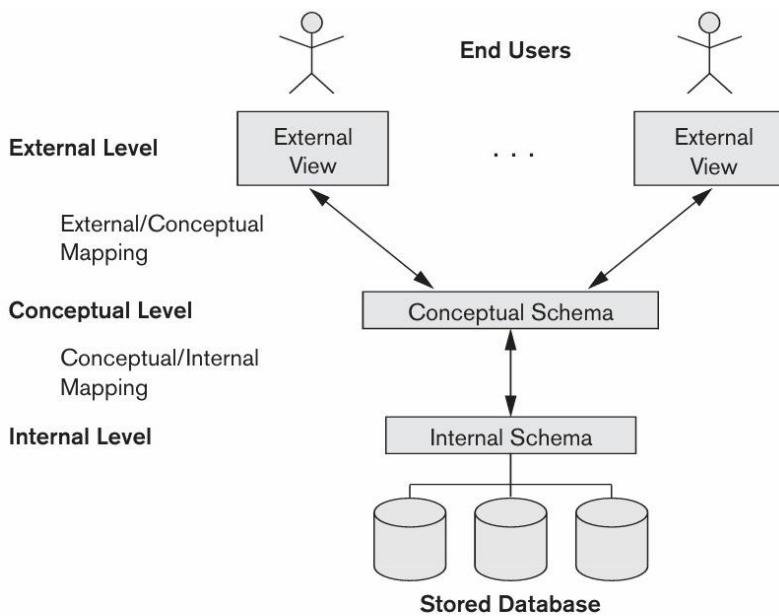
2. Conceptual View

- Logical structure of the entire database.
- Includes entities, attributes, and relationships.

Example:

Tables: STUDENT, COURSE, ENROLLMENT.

3. Internal View


- Physical storage of data.
- Includes indexing, file organization.

Example:

Data stored in B-trees on disk.

Advantages

- Data abstraction
- Security
- Data independence

Q5. ER Diagram – Library Management System.

1. BOOK (Strong Entity)

- Book_ID (*Primary Key*)
- Title
- Author
- Publisher
- Price

2. MEMBER (Strong Entity)

- Member_ID (*Primary Key*)
- Name
- Address
- Phone_No

3. ISSUE (Weak Entity)

- Issue_Date
- Return_Date
- Fine_Amount

ISSUE is a weak entity because it cannot exist without BOOK and MEMBER.
Diagram

Q6. Set Operations in Relational Algebra. Set Operations

1. Union (\cup)
 - Combines tuples from two relations.
 - Relations must be union-compatible.
2. Intersection (\cap)
 - Common tuples from both relations.
3. Difference ($-$)
 - Tuples in first relation but not in second.
4. Cartesian Product (\times)
 - Combines every tuple of one relation with another.

Q7. ER Model vs Relational Model.

The ER Model is a high-level conceptual data model used to represent real-world entities and their relationships in a graphical form. It helps database designers understand system requirements clearly before database implementation.

Key Features

- Represents data using entities, attributes, and relationships
- Uses ER diagrams (rectangles, diamonds, ovals)
- Focuses on what data is required, not how it is stored
- Used during the database design phase

2. Relational Model

The Relational Model is a logical data model where data is stored in the form of tables (relations) consisting of rows and columns. It is based on mathematical concepts such as set theory and predicate logic.

Key Features

- Represents data using tables
- Uses rows (tuples) and columns (attributes)
- Relationships are implemented using foreign keys
- Supports SQL for data manipulation
- Used during database implementation

Aspect	ER Model	Relational Model
Level of Abstraction	High-level (Conceptual)	Logical/Low-level
Representation	ER diagram	Tables (Relations)

Aspect	ER Model	Relational Model
Basic Components	Entity, Attribute, Relationship Table, Row, Column	
Relationships	Shown using diamonds	Implemented using foreign keys
Keys	Key attributes	Primary key, Foreign key
Focus	Database design	Database implementation
Complexity	Easy to understand	More formal and strict
Used By	Database designers	DBMS and programmers
Supports SQL	No	Yes
Purpose	Requirement analysis	Data storage and retrieval

Q8. Types of Keys.

A key is an attribute or a set of attributes that is used to uniquely identify tuples (rows) in a relation (table). Keys help in maintaining data integrity and relationships between tables.

Types of Keys

1. Super Key

- A set of one or more attributes that uniquely identifies a tuple.
- May contain extra attributes.

Example:

STUDENT(Roll_No, Email, Name)

- {Roll_No}
- {Email}
- {Roll_No, Name}

2. Candidate Key

- Minimal super key.
- No attribute can be removed without losing uniqueness.

Example:

- Roll_No
- Email

3. Primary Key

- One candidate key selected to uniquely identify records.
- Cannot be NULL or duplicate.

Example:

STUDENT(Roll_No, Name, Dept)

4. Alternate Key

- Candidate keys not chosen as primary key.

Example:

If Roll_No is primary key, Email is alternate key.

5. Composite Key

- A key formed using two or more attributes.

Example:

ENROLLMENT(Roll_No, Course_ID)

→ (Roll_No, Course_ID)

6. Foreign Key

- Attribute that references the primary key of another table.
- Used to maintain referential integrity.

Example:

STUDENT(Roll_No)

MARKS(Roll_No) → Foreign Key

Q9. SELECT and PROJECT operations.

1. SELECT Operation (σ)

Definition

- Used to select rows (tuples) from a relation that satisfy a given condition.
- It is a horizontal operation.

Syntax

σ condition (Relation)

Example

EMPLOYEE(Eid, Name, Salary, Dept)

σ Salary > 30000 (EMPLOYEE)

→ Returns employees whose salary is greater than 30000.

2. PROJECT Operation (π)

Definition

- Used to select specific columns (attributes) from a relation.
- It is a vertical operation.
- Removes duplicate tuples.

Syntax

π attribute_list (Relation)

Example

π Name, Salary (EMPLOYEE)

→ Returns only Name and Salary columns.

Difference between SELECT and PROJECT

SELECT PROJECT

Selects rows Selects columns

Horizontal operation Vertical operation

Uses condition Uses attribute list

Symbol σ Symbol π

Combined Example

π Name (σ Dept = 'MCA' (STUDENT))

Q10. Structure of SQL and classification.

SQL (Structured Query Language) is used to interact with relational databases.

SELECT column_list

FROM table_name

WHERE condition

GROUP BY column

HAVING condition

ORDER BY column;

SELECT → columns to display

FROM → table name

- WHERE → condition
- GROUP BY → grouping
- HAVING → group condition
- ORDER BY → sorting

Classification of SQL Commands

1. DDL – Data Definition Language

Used to define database structure.

Command Example

```
CREATE CREATE TABLE STUDENT(...);
```

```
ALTER ALTER TABLE STUDENT ADD Age INT;
```

```
DROP DROP TABLE STUDENT;
```

2. DML – Data Manipulation Language

Used to manipulate data.

Command Example

```
INSERT INSERT INTO STUDENT VALUES(...);
```

```
UPDATE UPDATE STUDENT SET Dept='MCA';
```

```
DELETE DELETE FROM STUDENT WHERE Roll_No=1;
```

3. DQL – Data Query Language

Used to retrieve data.

Command Example

```
SELECT SELECT * FROM STUDENT;
```

4. DCL – Data Control Language

Used for authorization.

Command Example

```
GRANT GRANT SELECT ON STUDENT TO user1;
```

```
REVOKE REVOKE SELECT FROM user1;
```

5. TCL – Transaction Control Language

Used to manage transactions.

Command Example

COMMIT COMMIT;

ROLLBACK ROLLBACK;

SAVEPOINT SAVEPOINT sp1;