Internal Assessment Test 1 — DEC 2025

Operating System Sub Code: MMC104

29/12/202 | Duration

5

PART I

1. Explain in brief about functions and services of an OS.

An Operating System (OS) is system software that acts as an interface between the user and
computer hardware. It manages system resources efficiently and provides a convenient
environment for program execution. The major functions and services of an operating system
are explained below.

Functions of an Operating System

1. Process Management

The OS is responsible for managing processes in the system. It creates processes, schedules them
for execution, and terminates them when they are completed. The OS ensures efficient CPU
utilization through techniques like multitasking, multithreading, and context switching.

2. Memory Management

Memory management involves allocating and deallocating main memory to programs as
required. The OS keeps track of which part of memory is in use and by which process. It also
supports virtual memory, paging, and segmentation to optimize memory utilization.

3. File System Management

The OS manages files stored on secondary storage devices. It provides mechanisms for creating,
deleting, reading, writing, and organizing files into directories. It also maintains file permissions
to ensure data security.

4. Device Management

The OS controls and coordinates the operation of input and output devices such as keyboards,
printers, and disks. Device drivers are used to communicate with hardware devices. The OS also
handles buffering, caching, and spooling.

5. Secondary Storage Management

The OS manages disk space by keeping track of free space, allocating storage to files, and
scheduling disk access to improve performance.

90 min’s Max Marks: | 50 Sem: 1 Branch: MCA

6. Security and Protection

The OS protects system resources and user data from unauthorized access. It provides
authentication mechanisms such as passwords and access control lists to ensure data integrity
and privacy.

Services of an Operating System

1. Program Execution

The OS loads programs into memory, executes them, and handles their termination. It provides
the environment needed for program execution.

2. Input/Output Operations

The OS offers standardized interfaces for I/O operations so that users and applications do not
need to worry about hardware-specific details.

3. File Manipulation Services

The OS allows users and programs to create, modify, read, write, and delete files in a secure and
organized manner.

4. Communication Services

The OS supports inter-process communication (IPC) through mechanisms like pipes, shared
memory, and message passing. It also facilitates network communication.

5. Error Detection and Handling

The OS continuously monitors the system for errors such as memory faults, I/O failures, and
hardware malfunctions, and takes corrective actions.

6. User Interface

The OS provides a user-friendly interface in the form of a Command Line Interface (CLI) or
Graphical User Interface (GUI) for user interaction.

2. Explain batch processing and real time OS in detail
The batch-processing operating system was very popular in the 1970s. In batch operating system
the jobs were performed in batches. This means Jobs having similar requirements are grouped
and executed as a group to speed up processing. Users using batch operating systems do not
interact with the computer directly. Each user prepares their job using an offline device for
example a punch card and submits it to the computer operator. Once the programmers have left
their programs with the operator, they sort the programs with similar needs into batches.

Job1 Batch
Job 2 Batch
Operating
System
Jabn Batch

Working of Batch Processing Operating Systems

The Batch operating system is a new, open-source operating system that is being developed by
the Berkeley Open Infrastructure for Network Computing (BOINC) project. A batch is a
segmental operating system that can be collected from smaller pieces, allowing it to be modified
to specific needs.

The Batch project is led by Berkeley computer scientist Pieter Abbeel, who is also the project's
primary code contributor. The batch is intended to be lightweight and efficient and is intended to
be used primarily in grid computing environments.

The Batch project is presently in the progress stage, and there is still a lot of work to be done
before the operating system is ready for use. However, growth has been made in recent months,
and the project is probable to be completed within the next year.

There are many types of batch operating systems. One popular type is the scheduled batch
system. This type of system is used to control the execution of a series of tasks or jobs. Other
types of batch systems include the interactive batch system, the real-time batch system, and the
concurrent batch system.

Real-Time Operating System (RTOS)

A real-time operating system (RTOS) is a special kind of operating system designed to handle
tasks that need to be completed quickly and on time. Unlike general-purpose operating systems
(GPOS), which are good at multitasking and user interaction, RTOS focuses on doing things in
real time.

The idea of real-time computing has been around for many years. The first RTOS was created by
Cambridge University in the 1960s. This early system allowed multiple processes to run at the
same time, each within strict time limits.

Types of Real Time
Operating System

Hard Real Time Soft Real Time Firm Real Time
Operating System| | Operating System Operating System

e Hard Real-Time Operating System : These operating systems guarantee that
critical tasks are completed within a range of time. For example, a robot is hired to
weld a car body. If the robot welds too early or too late, the car cannot be sold, so it is
a hard real-time system that requires complete car welding by the robot hardly on
time., scientific experiments, medical imaging systems, industrial control systems,
weapon systems, robots, air traffic control systems, etc.

e Soft Real-Time Operating System : This operating system provides some relaxation
in the time limit. For example - Multimedia systems, digital audio systems, etc.
Explicit, programmer-defined, and controlled processes are encountered in real-time
systems. A separate process is changed by handling a single external event. The
process is activated upon the occurrence of the related event signaled by an interrupt.

PART 11
3. Write a short note on implementation of system calls.

User programs cannot directly access hardware or critical OS resources because it would make
the system unstable and insecure. To maintain safety, the operating system provides system calls
— controlled interfaces that allow user programs to request services from the kernel. These calls
act as a gateway between user mode and kernel mode. System Calls are,

e A way for programs to interact with the operating system.
e Provide the services of the operating system to the user programs.

e Only entry points into the kernel are executed in kernel mode.

A system call is a controlled entry point that allows a user program to request a service from the
operating system. Here's how it works:

e The user program executes a system call instruction (e.g., using syscall or int 0x80).

e The CPU switches from user mode — kernel mode for safe execution.

e The kernel identifies the system call number and performs the requested operation
(file access, process creation, memory allocation, etc.).

e After completing the task, the kernel switches back to user mode.

e The result (success/failure/data) is returned to the program.

e Without system calls, every program would need its own way to access hardware,

leading to inconsistent and insecure systems.

System calls do not always cause context switching. They primarily involve a mode switch from
user mode to kernel mode. A context switch happens only when the calling process is
blocked, not during every system call.

1
b

— usar apploation
N F

et

gy ==
ayabeen call interdace
Esmel
mode &
- —i— : apanf
- Impisrerntation
i E ' g ol ol |)
. faraimrn call
- =
reurm
Types of System Calls

Services provided by an OS are typically related to any kind of operation that a user program can
perform like creation, termination, forking, moving, communication, etc. Similar types of
operations are grouped into one single system call category. System calls are classified into the
following File System: Used to create, open, read, write, and manage files and directories.

e Process Control: Used to create, execute, synchronize, and terminate processes.

e Memory Management: Used to allocate, deallocate, and manage memory for
processes.

e Interprocess Communication (IPC): Used for data exchange and communication

between different processes.

e Device Management: Used to request and release devices, and to perform read/write

operations on them.

4. Differentiate between preemptive and non- preemptive scheduling.

CPU scheduling in operating systems is the method of selecting which process in the ready
queue will execute on the CPU next. It aims to utilise the processor efficiently while minimising
waiting and response times. By determining an optimal execution order, CPU scheduling
enhances overall system performance, supports smooth multitasking, and improves the user
experience.

Scheduling can be broadly classified into two types: Preemptive and Non-Preemptive.

Preemptive Scheduling Non-Preemptive Scheduling

Once resources(CPU Cycle) are allocated
In this resources(CPU Cycle) are allocated to a process, the process holds it till it
to a process for a limited time. completes its burst time or switches to
waiting state

Process can not be interrupted until it

Process can be interrupted in between. . . A
terminates itself or its time is up

If a process having high priority frequently If a process with a long burst time is
arrives in the ready queue, a low priority running CPU, then later coming process
process may starve with less CPU burst time may starve

It has overheads of scheduling the It does not have overheads

processes
Average process response time is less Average process response time is high
Decisions are made by the scheduler and Decisions are made by the process itself
are based on priority and time slice and the OS just follows the process's
allocation instructions

More as a process might be preempted

s . Less as a process is never preempted.
when it was accessing a shared resource.

Examples of preemptive scheduling are Examples of non-preemptive scheduling
Round Robin and Shortest Remaining are First Come First Serve and Shortest
Time First Job First
PART III

S.1llustrate with a neat sketch, the process states and process control block.

When a process runs, it goes through many states. Distinct operating systems have different
stages, and the names of these states are not standardised. In general, a process can be in one of
the five states listed below at any given time.

Start
When a process is started/created first, it is in this state.

Ready

Here, the process is waiting for a processor to be assigned to it. Ready processes are waiting for
the operating system to assign them a processor so that they can run. The process may enter this
state after starting or while running, but the scheduler may interrupt it to assign the CPU to
another process.

Running

When the OS scheduler assigns a processor to a process, the process state gets set to running, and
the processor executes the process instructions.

Waiting

If a process needs to wait for any resource, such as for user input or for a file to become
available, it enters the waiting state.

Terminated or Exit

The process is relocated to the terminated state, where it waits for removal from the main
memory once it has completed its execution or been terminated by the operating system.

™ e ™ ¢ ‘e ™
- Start —» Z,_ Ready ,I If_ Runnlng —b- Termlnated
M v ' S - oy
C Wait
s d

Process Control Block (PCB)

Every process has a process control block, which is a data structure managed by the operating
system. An integer process ID (or PID) is used to identify the PCB. As shown below, PCB stores
all of the information required to maintain track of a process.

Process state

The process’s present state, such as whether it’s ready, waiting, running, or whatever.

Process privileges

This is required in order to grant or deny access to system resources.

Process ID

Each process in the OS has its own unique identifier.

Pointer

It refers to a pointer that points to the parent process.

Program counter

The program counter refers to a pointer that points to the address of the process’s next
instruction.

CPU registers

Processes must be stored in various CPU registers for execution in the running state.

CPU scheduling information

Process priority and additional scheduling information are required for the process to be
scheduled.

Memory management information

This includes information from the page table, memory limitations, and segment table, all of
which are dependent on the amount of memory used by the OS.

Accounting information

This comprises CPU use for process execution, time constraints, and execution ID, among other
things.

10 status information

This section includes a list of the process’s I/O devices.

The PCB architecture is fully dependent on the operating system, and different operating systems

may include different information. A simplified diagram of a PCB is shown below.

Process ID

State

Pointer
Priority
Program counter

CPU registers

/O information

Accounting information

etc...

6. Explain about the basic concepts of process scheduling and also common
criteria used to evaluate scheduling algorithms?

Process scheduling in OS is an essential function of an operating system (OS) is an essential
function that manages how different programs (processes) share the CPU. In a multitasking
environment where several processes are generally executed simultaneously, the operating
system has to choose which process will be granted CPU time and for how long. Such a
procedure keeps the system running smoothly and makes sure that resources are utilized
efficiently.

Process scheduling in an operating system is practically dependent on the basic operations that

can be done on processes during their lifecycle. Such operations are:

1. Process Creation

e A new process can be created by an existing process, typically using system calls like
fork (in Unix-based systems) or spawn.

e The creating process is known as the parent process, while the new one is called the child
process.

e The child process may inherit resources from its parent or have its own separate

resources, depending on the system design.

Creation is often triggered when a new program needs to run or a task requires a separate

execution flow.

2. Process Termination

A process finishes execution and is terminated using system calls such as exit.
Termination can occur voluntarily (process completes its task) or involuntarily (killed by
the OS or parent).

When a process terminates, its resources are released and its entry is removed from the
process table.

If a parent process ends before its child, the child becomes an orphan process, which is

then typically re-parented to a special system process.

3. Process Suspension and Reintroduction

Sometimes, a process may be suspended (swapped out of memory) to free up resources
or manage memory pressure—this is often handled by the medium-term scheduler.
Suspended processes can later be reintroduced (swapped back in) to resume execution
from where they left off.

This operation is crucial for balancing CPU and memory usage, especially when

managing many [/O-bound tasks.

4. Parent and Child Relationships

Parent and child processes may communicate and synchronize their operations.

The parent may be allowed to wait for the child to finish, or they can both operate
separately.

System calls such as wait give the opportunity for the parent to stop it will be a moment

only until the child disappears, thus providing an orderly way to manage resources.

5. Special Process States

Orphan processes: Created when a parent terminates before its child; the OS typically

reassigns them to a system process.

e Zombie processes: Processes that have run to completion but still have a record in the

process table (waiting for the parent to get their termination status).

Different CPU Scheduling algorithms have different structures and the choice of a particular

algorithm depends on a variety of factors.

e CPU Utilization: The main purpose of any CPU algorithm is to keep the CPU as
busy as possible. Theoretically, CPU usage can range from 0 to 100 but in a real-time
system, it varies from 40 to 90 percent depending on the system load.

e Throughput: The average CPU performance is the number of processes performed
and completed during each unit. This is called throughput. The output may vary
depending on the length or duration of the processes.

e Turn Round Time: For a particular process, the important conditions are how long it
takes to perform that process. The time elapsed from the time of process delivery to
the time of completion is known as the conversion time. Conversion time is the
amount of time spent waiting for memory access, waiting in line, using CPU and
waiting for I/O.

o Waiting Time: The Scheduling algorithm does not affect the time required to
complete the process once it has started performing. It only affects the waiting time of
the process i.e. the time spent in the waiting process in the ready queue.

o Response Time: In a collaborative system, turn around time is not the best option.
The process may produce something early and continue to computing the new results
while the previous results are released to the user. Therefore another method is the
time taken in the submission of the application process until the first response is

issued. This measure is called response time.

PART IV
7.Explain in detail about the SJF scheduling algorithm with examples
Shortest Job First (SJF) or Shortest Job Next (SJN) is a scheduling process that selects the
waiting process with the smallest execution time to execute next. This scheduling method may or
may not be preemptive. Significantly reduces the average waiting time for other processes
waiting to be executed.

Estimation Formula Concept in SJF Scheduling

The Shortest Job First (SJF) Scheduling algorithm selects the process with the smallest burst
time for execution. But in some cases, the exact burst time of a process may not be known in
advance. In such scenarios, an estimation formula is used to predict the next burst time based on
the previous burst times.

Shortest Job First (SJF) Scheduling Algorithm

P Bprst Waiting time (P1) =3 Waiting time (P2) = 16
Time e (\
P1 6 0123456 789101112131415161718192021222324
— P2 8 LD 0 T T T T T (s e g
P3 | 7 l |)
— P4 3 Waiting time (P4) =0 Waiting time (P3) =9

Characteristics of SJF Scheduling
e Shortest Job first has the advantage of having a minimum average waiting time

among all operating system scheduling algorithms.
e [t is associated with each task as a unit of time to complete.
e [t may cause starvation if shorter processes keep coming. This problem can be solved

using the concept of aging.

Example: Consider the following table of arrival time and burst time for three processes P1, P2
and P3.

Process Burst Time Arrival Time

P1 6 ms 0 ms

P2 8 ms 2 ms

P3 3ms 4 ms

8.What is the critical section problem? explain about the criteria in detail.

A critical section is a part of a program where shared resources (like memory, files, or variables)
are accessed by multiple processes or threads. To avoid problems such as race conditions and
data inconsistency, only one process/thread should execute the critical section at a time using
synchronization techniques. This ensures that operations on shared resources are performed
safely and predictably.

Structure of a Critical Section
1. Entry Section

e The process requests permission to enter the critical section.

e Synchronization tools (e.g., mutex, semaphore) are used to control access.

2. Critical Section: The actual code where shared resources are accessed or modified.

3. Exit Section: The process releases the lock or semaphore, allowing other processes to enter
the critical section.

4. Remainder Section: The rest of the program that does not involve shared resource access.

do{

Entry Section

acquireLock();

v
Critical Section

accessSharedResource();

!
Exit Section

releaselLock();

v
Remainder Section

}while(true);

Requirements of Critical Section Solutions
1. Mutual Exclusion

e At most one process can be inside the critical section at a time.
e Prevents conflicts by ensuring no two processes update the shared resource

simultaneously.

2. Progress

e [fno process is in the critical section, and some processes want to enter, the choice of
who enters next should not be postponed indefinitely.

e Ensures that the system continues to make progress rather than getting stuck.

3. Bounded Waiting

e There must be a limit on how long a process waits before it gets a chance to enter the
critical section.
e Prevents starvation, where one process is repeatedly bypassed while others get to

execute.

PART V

9.Calculate the average waiting time, turnaround time for

i) priority ii)Round Robin(tq=2ms) with the following set of processes.

Process | P1 P2 P3 P4 PS5
Burst Time | 1() 1 2 1 5
Priority 3 1 3 4 5
Priority Scheduling
Process | Burst Time | Priority |Start Time | Completion Time | Waiting Time | Turnaround Time
(ms) (ms) (ms) (ms) (ms)
P2 1 1 0 1 0 1
P1 10 3 1 11 1 11
P3 2 3 11 13 11 13
P4 1 A 13 14 13 14
P5 5 5 14 19 14 19
Average Waiting Time 7.8 ms

Average Turnaround Time [11.6 ms

Round Robin

Process | Burst Time (ms) | Completion Time (ms) | Turnaround Time (ms) | Waiting Time (ms)
P1 10 19 19 9
P2 1 3 3 2
P3 2 5 5 3
P4 1 6 6 5
P5 5 15 15 10
Metric Value

Average Waiting Time 5.8 ms

Average Turnaround Time[9.6 ms

10.Explain about the producer-consumer problem of synchronization

The Producer-Consumer problem is a classic example of a synchronization problem in operating
systems. It demonstrates how processes or threads can safely share resources without conflicts.
This problem belongs to the process synchronization domain, specifically dealing with
coordination between multiple processes sharing a common buffer.

e Producers: Generate data items and place them in a shared buffer.

e Consumers: Remove and process data items from the buffer.

The main challenge is to ensure:

1. A producer does not add data to a full buffer.
2. A consumer does not remove data from an empty buffer.
3. Multiple producers and consumers do not access the buffer simultaneously,

preventing race conditions.

Problem Statement
Consider a fixed-size buffer shared between a producer and a consumer.

e The producer generates an item and places it in the buffer.

o The consumer removes an item from the buffer.

The buffer is the critical section. At any moment:
e A producer cannot place an item if the buffer is full.

e A consumer cannot remove an item if the buffer is empty.

To manage this, we use three semaphores:
e mutex — ensures mutual exclusion when accessing the buffer.
e full — counts the number of filled slots in the buffer.

e empty — counts the number of empty slots in the buffer.

Producer
do{

// Produce an item
wait(empty); // Check for empty slot
wait(mutex); // Enter critical section

// Place item in buffer

signal(mutex), // Exit critical section
signal(full); // Increase number of full slots
} while (true),

Consumer

do{
wait(full); // Check for filled slot
wait(mutex); // Enter critical section

// Remove item from buffer

signal(mutex), // Exit critical section
signal(empty); // Increase number of empty slots
} while (true),

	Functions of an Operating System
	1. Process Management
	2. Memory Management
	3. File System Management
	4. Device Management
	5. Secondary Storage Management
	6. Security and Protection

	Services of an Operating System
	1. Program Execution
	2. Input/Output Operations
	3. File Manipulation Services
	4. Communication Services
	5. Error Detection and Handling
	6. User Interface

	Working of Batch Processing Operating Systems
	Real-Time Operating System (RTOS)
	Types of System Calls
	Ready
	Running
	Waiting
	Terminated or Exit

	Process Control Block (PCB)
	Process state
	Process privileges
	Process ID
	Pointer
	Program counter
	CPU registers
	CPU scheduling information
	Memory management information
	Accounting information
	IO status information
	1. Process Creation
	2. Process Termination
	3. Process Suspension and Reintroduction
	4. Parent and Child Relationships
	5. Special Process States
	Estimation Formula Concept in SJF Scheduling

	Characteristics of SJF Scheduling
	Structure of a Critical Section
	Requirements of Critical Section Solutions
	1. Mutual Exclusion
	2. Progress
	3. Bounded Waiting

	Priority Scheduling
	Process
	Burst Time (ms)
	Priority
	Start Time (ms)
	Completion Time (ms)
	Waiting Time (ms)
	Turnaround Time (ms)
	P2
	1
	1
	0
	1
	0
	1
	P1
	10
	3
	1
	11
	1
	11
	P3
	2
	3
	11
	13
	11
	13
	P4
	1
	4
	13
	14
	13
	14
	P5
	5
	5
	14
	19
	14
	19
	
	Average Waiting Time
	7.8 ms
	Average Turnaround Time
	11.6 ms
	Round Robin
	
	Process
	Burst Time (ms)
	Completion Time (ms)
	Turnaround Time (ms)
	Waiting Time (ms)
	P1
	10
	19
	19
	9
	P2
	1
	3
	3
	2
	P3
	2
	5
	5
	3
	P4
	1
	6
	6
	5
	P5
	5
	15
	15
	10
	
	Metric
	Value
	Average Waiting Time
	5.8 ms
	Average Turnaround Time
	9.6 ms
	Problem Statement

