Internal Assessment Test 2 — November 2025

Sub: | Deep Learning and Reinforcement Learning Sub Code: BAI701 | Branch: AIML
Date: Duration: 90 min Max 50 Sem/Sec: VII (A& B) OBE
Marks:
Scheme of Evaluation MAR | CO |RB
KS T
1 |[Explain the working mechanism of a Recurrent Neural Network (RNN) and explain why it is| 10 CO2 [L2

effective for handling sequential or time-dependent data.

Solution: Explanation 10M

A Recurrent Neural Network (RNN) is a type of neural network specially designed for sequential
data. Unlike feed-forward networks, an RNN has loops in its architecture, which allow|
information from previous time steps to influence the current output. As stated in the PDF, “RNN|
has recurrence in it and the current output is influenced not only from the current input but also
from the past inputs.”

How an RNN Works

An RNN processes inputs one time-step at a time:

1. At each time-step ¢, the RNN receives:

o Current input xtx_txt
o Hidden state from previous step ht—1h_{t-1}ht—1
2. It combines them to produce:

o New hidden state hth_tht

o Output yty_tyt
The hidden state acts as the memory, storing relevant information from earlier steps. This allows
the “unfolded computational graph” of the RNN to propagate information across time. The PDF
states that the “unfolded computational graph in an RNN allows considering the historical context

or information”

1. RNN - Specialized for processing a sequence data
eg. This movie is good, really not bad vs. This movie is bad, really not good.

Meural netwoaork Fecurrent neural network

hput layer
Hidden layer

— w

2. RNN - Sharing parameters across different parts of a model

* Such sharing is particularly important when a specific piece of information can occur at
multiple positions within the sequence.

* For example, consider the two sentences “I went to Nepal in 2009 and “In 2009, I went to
Nepal.”

» If we ask a machine learning model to read each sentence and extract the year in which the
narrator went to Nepal, we would like it to recognize the year 2009 as the relevant piece off
information, whether it appears in the sixth word or the second word of the sentence.

* Feed Forward
| Separate Parameter for each Input
[J Needs to Learn ALL of the Rules of Languages
* CNN
(] Output of CNN is a Small Number of Neighboring Member of Inputs.

[] The idea of parameter sharing manifests in the application of the same convolution|

kernel at each time step.
Recurrent networks share parameters in a different way.
Each member of the output is a function of the previous members of the output.
Each member of the output is produced using the same update rule applied to the
previous outputs.
This recurrent formulation results in the sharing of parameters through a very deep
computational graph.

Analyze the role of Gradient Descent in training RNNs and explain how vanishing and exploding
gradients influence learning performance and stability.

Solution: 10
The recurrent neural network of figure 10.3 and equation 10.8 is universal in the sense that any
function computable by a Turing machine can be computed by such a recurrent network of a finite
size.

'We now develop the forward propagation equations for the RNN depicted in figure 10.3.

The figure does not specify the choice of activation function for the hidden units.

Here we assume the hyperbolic tangent activation function. Also, the figure does not specify
exactly what form the output and loss function take.

))
L &8

Unfold
W .
/ W / A
L XERY L aNCN
\ \ !
- -

0,000,000

Figure 10.3: The computational graph to compute the training loss of a recurrent network
that maps an input sequence of @ values to a corresponding sequence of output o values.
A loss L measures how [ar each ois from the corresponding training tareet 4. When using
softmax outputs, we assume o is the unnormalized log probabilities. The loss 1. internally
computes g — soltmax(o) and comparcs this to the target y. The RNN has input to hidden
connections parametrized by a weight matrix 7. hidden-to-hidden recurrent connections
parametrized by a weight matrix W, and hidden-to-output connections parametrized by
a weight matrix V. Equation 10.5 defines forward propagation in this model. (Left)The
RNN and its loss drawn with recurrent connmections. (ftight)'he same seen as an time-
unfolded computational graph, where each node i now associated with one particular
time instance.

We can then apply the softrax operation as a post-processing step to obtain a vector i of normalized

probabilities over the output,

Forward propagation begins with a specification of the initial state 4" Then, foreach time step from t=1to¢=t1
we apply the following update equations: d =y WRED {08
h" tanh{a') (109
o' c+ VR (10.10)

t . il
' = softmax|e™) 1011
where the parame’[El’S are the hias vectors ¢ aiw . SILIE WL LIS W EIE L HaLLeEs v and W, rESpECt‘iVEW fo

input-to-hidden, hiddento-output and hidden-to-hidden connections.
This is an exam ple of a recurrent network that maps an input sequenceto an output sequence of the same length
The total loss for a given sequence of x values paired with a sequence of ¥ values would then be just the sum|

of the losses over all the time steps.

10

CcO2

L3

For example, it L) is the negative

i ol] X [.1l]
},|:It i a £ R i H {112
A A (10.13
e
-5 logp, et [y] {2 a1, {(10.14
i
where pmoded (3" el 'Y is given by reading the entry for _..-'I frivm the

model’s output vector '

Computing the gradient of this loss function with respect ta the parameters is an expensive operation,

The gradient computation involves performing a forward propagation pass moving left to right through aur
illustration of the unrolled graph in figure 10.3, followed by a backward propagation pass moving right to |eft
through the graph.

The runtime is O(t) and cannat be reduced by parallelization because the forward propagation graph is inherertly
sequential; each time step may only be computed after the previous one,

States computed in the forward pass must be stored until they are reused during the backward pass, so the
memary costis also OIr)

The hack-propagation algorithm applied to the unrolled graph with O(t) cast is called back-propagation through
time cr BPTT,

The network with recurrence betwaen hidden units is thus very powerful but also expensivetatrain,

Describe how an LSTM network improves learning in long-term sequential data compared to aj
conventional RNN.
Solution: 10M

+ Long Short Term hemory networks — usually just called “LSTMs” — are a special kind of RMMN, capable o
learning long-term dependencies.

+ LS5Ths are explicitly designed to avoid the long-term dependerncy problem.

+ Remembering information for long periods of time is practically their default behavior

+ Al recurrent neural networks hawve the form of a chain of repeating m odules of neural netwark.

+ Instandard RMNs, this repeating module will have a wery simple structure, such as a singletanh layer

= L5Th s also have this chain like structure, butthe repeating
module has a different structure.

= Instead ofhaving a single neural network laver, there are four,
interacting in avery special way. @ @

t P t
-
A T 4 7 A)
[[g] [==] o \J_’ [, t§;¥: ’

| Block dizgram of the LSTM recurrent
@ netwark "cell."

In the above diagram, each line carries an entire vector, from the output of
one node to the inputs of others. The pink circles represent pointwise

operations, like vector addition, while the yellow boxes are learned neural D

network layers. Lines merging denote concatenation, while a line forking

denote its content being copied and the copies going to different locations. balbehio Rortese Ve
Ligar Operan Traler - bl

= The key to L3TMsisthe cell state, the horzontal line running through the top of the diagram.

= The cell state is kind of like a conveyorbelt.

= It runs straight down the entire chain, with only some minor linear interactions. It'svery easy for
information to just flow alongitunchanged.

= The L5TM does have the ability to remove oradd information to the cell state, carefully regulated by
structures called gates.

= Gates are away to optonally let infonmation throuzh, Consider this example - They are composed +
out of 3 sigmoid neural net laverand a pointwise multiplication operation.

= The sigmoid laveroutputs numbersbetween zero and one, describing how much of each component
should be let through.

= Avwalue of zero means “let nothing through,” while avalue of one means “let everything through!™

= AN LSTM hasthree ofthess gates, to protect and control the cell state.

* The LSTR has been found extremely successtul in many applications,
such as handwriting recognition, speech recognition, handwriting
generation, machine translation, image captioning and Parsing.

* LSTM recurrent netwarks have “LSTM cells” that have an intemal
recurrence [aselfloop), in addition to the outer recurrence ofthe RMM.

» Each cell has the same inputs and outputs as an ordinary recurrent

network, but has more parameters and a systern of gating units that

controls the flow of infarmation.

* The mostimportant componentisthe state unit s7that hasa selfloop. F”DCli diagrarm of the LSTM recurrent network
However, here, the self-loop weight is controlled by aforgetgate unit 7" cell
[for time step fand cell §), that setsthisweight to avalue between 0and

1lviaa sigmoid unit.

10

COo2

L2

Step-by-Step LSTM Walk Through

The first step in our LSTM isto decide what information wwe’re going to throw away from the cell state.

This decision ismade by asigmoid lavercalled the “forget zate laver”

Itlooks at hH and o and outputs a numberbetween 0and 1 foreach numberin the cell state Coy

A1 represents“completely keep this" while 30 represents “cormpletely get rid of this”

Let’sgo back to ourexample of alanguage model treing to predict the nextword based on all the previous ones.

In such aprobler, the cell state might include the gender of the present subject, so thatthe correct pronouns can be

used. When we see anew subject, we wantto forget the genderof the old subject.

fo= o (Wy[her,m] + by)

whiore & s e current inpat veetor and K™ is the eureent bidden ayer votor
itaining the outputs of 1 the LSTM eells, and & U7, W/ ar |--|.-.'|.-:-.

Step-by-Step LSTM Walk Through

The next step is to decide what new information we're going to store in the cell state. This has

two parts. F noid laver called the “input gate laver” decides which values we'll update.
Nexi, a tanh laver creates a vector of new candidate values, (-‘,_ that could be added to the state,

In the next step, we'll combine these two to create an update to the state,

In the example of our lanpuage model, we's 1t to add the gender of the new subject to the
cell state, to replace the old one we're forgetting.
% 7 i
by o= (W [y g m| + &)
plf::!\._ C = tanh(We-[he 1,3 + b

WL

Explain the concept of stateless algorithms in the context of reinforcement learning and describe

how they function in decision-making systems. Also, discuss their suitability along with their basic
advantages and limitations.

Solution: 3 methods - 10 M
Stateless Algorithms in Reinforcement Learning — Explanation Based on the Screenshots

Concept of Stateless Algorithms

From the screenshots, the discussion focuses on the multi-armed bandit problem, which is the
simplest case of reinforcement learning. In this setting:

e Every trial provides the same probabilistic reward distribution for a given action.

o There is no notion of state, unlike games such as chess where the next decision depends
on the board state.

Thus, stateless algorithms are decision-making methods where:

o The agent does not track or update a system state.

o Each action’s reward is assumed to depend only on the action itself, not on any external or
changing state.

The agent simply learns the expected payoff of each action (slot machine) and bases its decision
on that.

10

CO3

L2

How Stateless Algorithms Function

The screenshots describe three stateless strategies:

1. Naive Algorithm

e Play each machine a fixed number of times (exploration).

o Then permanently select the machine with the highest observed payoff (exploitation).

e Very simple but rigid.

2. e-Greedy Algorithm

o With probability &, choose a random machine (exploration).
e With probability 1 — g, choose the machine with the best current average payoff
(exploitation).

e Ensures one is not trapped forever in a wrong strategy.

3. Upper-Bounding (UCB-like) Methods

e For each machine, compute an upper confidence bound:
Ui=Qi+CiU_i=Q_i+ C_iUi=Qi+Ci
where
o QiQ _iQi = estimated mean reward
o CiC_iCi = confidence interval (bonus for uncertainty)
o Machines with fewer trials get a larger bonus, encouraging exploration.
o Merges exploration and exploitation automatically.

All these methods use only past rewards of actions, not any environmental state.
Hence they are stateless.

Suitability of Stateless Algorithms

Stateless algorithms are suitable when:

o The environment does not change with actions.

e Rewards depend only on which action is chosen, not on any world state.

e The problem resembles a multi-armed bandit rather than a full RL environment.

Examples include:

o Choosing advertisements

e Selecting network routing paths

® Online recommendation systems

Advantages (Based on the Screenshots)

Naive Method

e Simple to implement.

o Conceptually casy.

e-Greedy

e Prevents being “trapped” in a wrong strategy.

e Uses the best strategy for most trials.

e Balances exploration and exploitation.

Upper-Bounding Methods

o More efficient learning of payoffs.

e Encourages exploration of uncertain actions.

o Allows explicit control of confidence through constant K.

e Does not require a separate exploration phase; both aspects are integrated.

Limitations (From the Screenshots)

Naive Method

e Hard to decide how many trials are enough for accurate payoff estimation.

e May require many exploratory trials, wasting effort.
e If the final choice is wrong, the gambler uses the wrong machine forever.

e Unrealistic for real problems due to its fixed strategy.

e-Greedy

o Choosing ¢ is difficult and context-dependent.

e Small € may take long to find the correct best option.

o Large € wastes trials on random exploration.

Upper-Bounding (UCB)

e Requires maintaining statistical confidence intervals.

e Larger K values cause excessive exploration.

e Still stateless, so unsuitable for problems requiring state-dependent decisions.

Explain the basic framework of reinforcement learning with a neat diagram.

Solution: Diagram- 2m
Explanation- 3M

CO3

L2

1. AGENT (MOUSE) TAKES AN ACTION a, (LEFT TURN IN MAZE) FROM STATE (POSITION) 5,
2. ENVIRONMENT GIVES MOUSE REWARD r, (CHEESE/NO CHEESE)

3. THE STATE OF AGENT IS CHANGED TO 5,
4. MOUSE'S NEURONS LPDATE SYNAPTIC WEIGHTS BASED ON WHETHER ACTION EARNED CHEESE

OVERALL: AGENT LEARNS OVER TIME TO TAKE STATE-SENSITIVE ACTIONS THAT EARN REWARDS

Figure 11.1: The broad framework of reinforcement learning

Framework of Reinforcement Learning (Based on the Figure)

The figure presents the broad framework of reinforcement learning, which describes how an
agent interacts with an environment to learn actions that maximize rewards over time.

1. Agent Takes an Action (all)

The agent (mouse) observes its current state sts_tst (its position in the maze).

It chooses and performs an action—for example, turn left.

2. Environment Returns a Reward (r(])

After the action, the environment provides feedback.

The reward tells whether the action was good or bad—for example, cheese = reward, no
cheese = no reward.

3. State Transition (s[] — s[1:1)

The environment then moves the agent to a new state st+1s_{t+1}st+1.

Example: After turning left, the mouse enters a new part of the maze.

4. Agent Updates Its Knowledge

Based on the reward, the agent updates its internal knowledge (synaptic weights).

Good actions get strengthened; bad actions get weakened.

5b

Discuss the reasons for using Reinforcement Learning in dynamic and real-time environments.
Solution: any 3 reason
1. RL Learns Directly From Interaction With the Environment

As shown in the framework:

o The agent takes an action

e The environment returns a reward

o The agent updates its strategy

This makes RL ideal for environments that cannot be fully modeled beforehand and must be|
learned through trial-and-error.

2. Ability to Adapt to Uncertain and Changing Conditions

The text about bandit problems explains that payoffs are unknown and must be learned by
exploring machines.
This reflects real-time environments where:

e gsystem behavior changes,

e rewards vary over time,

e past observations may not be sufficient.

RL continues to adjust actions based on the latest rewards, making it effective in non-static|
environments.

3. Handles the Exploration—Exploitation Trade-off

The screenshots emphasize this trade-off:

e Too much exploration wastes resources

e Too much exploitation risks getting stuck with the wrong choice

Algorithms like e-greedy and Upper Confidence Bound (UCB) are designed to continuously
balance discovering new strategies (exploration) with using the best-known strategy
(exploitation).

Dynamic environments require this constant balance because conditions may shift.

4. Works Even Without a Full State Model

The multi-armed bandit is introduced as the simplest case of reinforcement learning, where there
is no notion of state.

This shows that RL can operate even when:

e full system models are unavailable,

e transitions are unknown,

e only rewards from actions are visible.

This is realistic for many real-time problems such as online recommendation, network routing,
robotics, etc.

CO3

L2

5. Enables Continuous Improvement Over Time

The framework diagram shows how:

e rewards influence the agent’s future decisions

e the agent gradually selects actions that lead to higher long-term reward

In dynamic systems, RL provides ongoing learning, not one-time optimization.
It adapts behavior as new data arrives.

6. Suitable for Delayed and Sequential Rewards

The framework illustrates that the reward for an action may not be immediate.
RL is built for situations where:

e actions influence future outcomes,

o rewards come after several steps,

e the agent must learn the long-term consequences of actions.

Dynamic environments frequently have such dependencies.

Apply the principles of reinforcement learning to demonstrate how a self-driving car can be|
modeled as an intelligent agent.
Solution: 10M

Modeling a Self-Driving Car as an RL Intelligent Agent

A self-driving car fits perfectly into the RL agent-environment interaction loop.

Agent

The intelligent control system inside the car:

e perception module

e decision-making module

e motion planner

Environment

Everything outside the car:

e road structure

e traffic signals
® pedestrians
e other vehicles

e weather conditions

The environment changes continuously—ideal for RL.

State (sts_tst)

Information available to the car at any moment:

e lane position

10

COo3

L3

e speed
e distance to nearby vehicles
e camera/LiDAR perceptions

e traffic light status

Actions (ata_tat)

The car's possible decisions:

e accelerate

e brake

e steer left/right
e change lane

e overtake

® stop

Reward (rtr_trt)

Rewards guide learning:

® positive: staying in lane, smooth driving, obeying signals, reaching destination

® negative: collisions, sharp braking, lane departure, traffic violations

Learning Process

1. The car observes its current state.

2. It selects an action (e.g., brake, steer left).
3. The environment reacts (slows down, avoids collision).
4. Reward is given.

5. The system updates its policy to improve future actions.

Faculty Signature CCI Signature

HOD Signature

	How an RNN Works
	Stateless Algorithms in Reinforcement Learning — Explanation Based on the Screenshots
	Concept of Stateless Algorithms

	How Stateless Algorithms Function
	1. Naïve Algorithm
	2. ε-Greedy Algorithm
	3. Upper-Bounding (UCB-like) Methods

	Suitability of Stateless Algorithms
	Advantages (Based on the Screenshots)
	Naïve Method
	ε-Greedy
	Upper-Bounding Methods

	Limitations (From the Screenshots)
	Naïve Method
	ε-Greedy
	Upper-Bounding (UCB)

	Framework of Reinforcement Learning (Based on the Figure)
	1. Agent Takes an Action (aₜ)
	2. Environment Returns a Reward (rₜ)
	3. State Transition (sₜ → sₜ₊₁)
	4. Agent Updates Its Knowledge
	1. RL Learns Directly From Interaction With the Environment
	2. Ability to Adapt to Uncertain and Changing Conditions
	3. Handles the Exploration–Exploitation Trade-off
	4. Works Even Without a Full State Model
	5. Enables Continuous Improvement Over Time
	6. Suitable for Delayed and Sequential Rewards

	Modeling a Self-Driving Car as an RL Intelligent Agent
	Agent
	Environment
	State (sts_tst​)
	Actions (ata_tat​)
	Reward (rtr_trt​)
	Learning Process

