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1 Explain the working mechanism of a Recurrent Neural Network (RNN) and explain why it is 
effective for handling sequential or time-dependent data. 
Solution: Explanation 10M  
A Recurrent Neural Network (RNN) is a type of neural network specially designed for sequential 
data. Unlike feed-forward networks, an RNN has loops in its architecture, which allow 
information from previous time steps to influence the current output. As stated in the PDF, “RNN 
has recurrence in it and the current output is influenced not only from the current input but also 
from the past inputs.” 

How an RNN Works 
An RNN processes inputs one time-step at a time: 

1.​ At each time-step t, the RNN receives:​
 

○​ Current input xtx_txt​​
 

○​ Hidden state from previous step ht−1h_{t-1}ht−1​​
 

2.​ It combines them to produce:​
 

○​ New hidden state hth_tht​​
 

○​ Output yty_tyt​​
 

The hidden state acts as the memory, storing relevant information from earlier steps. This allows 
the “unfolded computational graph” of the RNN to propagate information across time. The PDF 
states that the “unfolded computational graph in an RNN allows considering the historical context 
or information” 

1.​ RNN - Specialized for processing a sequence data 
eg. This movie is good, really not bad  vs. This movie is bad, really not good. 

 
2.​ RNN - Sharing parameters across different parts of a model 

•​ Such sharing is particularly important when a specific piece of information can occur at 
multiple positions within the sequence. 

•​ For example, consider the two sentences “I went to Nepal in 2009” and “In 2009, I went to 
Nepal.”  

•​ If we ask a machine learning model to read each sentence and extract the year in which the 
narrator went to Nepal, we would like it to recognize the year 2009 as the relevant piece of 
information, whether it appears in the sixth word or the second word of the sentence.  

• Feed Forward 
�​ Separate Parameter for each Input   
�​ Needs to Learn ALL of the Rules of Languages  

• CNN  
�​ Output of CNN is a Small Number of Neighboring Member of Inputs. 
�​ The idea of parameter sharing manifests in the application of the same convolution 
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kernel at each time step.  
�​ Recurrent networks share parameters in a different way.  
�​ Each member of the output is a function of the previous members of the output.  
�​ Each member of the output is produced using the same update rule applied to the 

previous outputs. 
�​ This recurrent formulation results in the sharing of parameters through a very deep 

computational graph. 
2 Analyze the role of Gradient Descent in training RNNs and explain how vanishing and exploding 

gradients influence learning performance and stability. 
 
Solution:   10  
The recurrent neural network of figure 10.3 and equation 10.8 is universal in the sense that any 
function computable by a Turing machine can be computed by such a recurrent network of a finite 
size. 
We now develop the forward propagation equations for the RNN depicted in figure 10.3.  
The figure does not specify the choice of activation function for the hidden units.  
Here we assume the hyperbolic tangent activation function. Also, the figure does not specify 
exactly what form the output and loss function take.  
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3 Describe how an LSTM network improves learning in long-term sequential data compared to a 
conventional RNN. 
Solution: 10M  
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4 Explain the concept of stateless algorithms in the context of reinforcement learning and describe 
how they function in decision-making systems. Also, discuss their suitability along with their basic 
advantages and limitations. 
 
Solution: 3 methods - 10 M 
Stateless Algorithms in Reinforcement Learning — Explanation Based on the Screenshots 

Concept of Stateless Algorithms 
From the screenshots, the discussion focuses on the multi-armed bandit problem, which is the 
simplest case of reinforcement learning. In this setting: 

●​ Every trial provides the same probabilistic reward distribution for a given action.​
 

●​ There is no notion of state, unlike games such as chess where the next decision depends 
on the board state.​
 

Thus, stateless algorithms are decision-making methods where: 

●​ The agent does not track or update a system state.​
 

●​ Each action’s reward is assumed to depend only on the action itself, not on any external or 
changing state.​
 

The agent simply learns the expected payoff of each action (slot machine) and bases its decision 
on that. 
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How Stateless Algorithms Function 

The screenshots describe three stateless strategies: 

1. Naïve Algorithm 
●​ Play each machine a fixed number of times (exploration).​

 

●​ Then permanently select the machine with the highest observed payoff (exploitation).​
 

●​ Very simple but rigid.​
 

2. ε-Greedy Algorithm 
●​ With probability ε, choose a random machine (exploration).​

 

●​ With probability 1 − ε, choose the machine with the best current average payoff 
(exploitation).​
 

●​ Ensures one is not trapped forever in a wrong strategy.​
 

3. Upper-Bounding (UCB-like) Methods 
●​ For each machine, compute an upper confidence bound:​

 Ui=Qi+CiU_i = Q_i + C_iUi​=Qi​+Ci​​
 where​
 

○​ QiQ_iQi​ = estimated mean reward​
 

○​ CiC_iCi​ = confidence interval (bonus for uncertainty)​
 

●​ Machines with fewer trials get a larger bonus, encouraging exploration.​
 

●​ Merges exploration and exploitation automatically.​
 

All these methods use only past rewards of actions, not any environmental state.​
 Hence they are stateless. 

 
Suitability of Stateless Algorithms 

Stateless algorithms are suitable when: 

●​ The environment does not change with actions.​
 

●​ Rewards depend only on which action is chosen, not on any world state.​
 

●​ The problem resembles a multi-armed bandit rather than a full RL environment.​
 

Examples include: 

●​ Choosing advertisements​
 

●​ Selecting network routing paths​
 

●​ Online recommendation systems​
 

 
Advantages (Based on the Screenshots) 

Naïve Method 
●​ Simple to implement.​



 

●​ Conceptually easy.​
 

ε-Greedy 
●​ Prevents being “trapped” in a wrong strategy.​

 

●​ Uses the best strategy for most trials.​
 

●​ Balances exploration and exploitation.​
 

Upper-Bounding Methods 
●​ More efficient learning of payoffs.​

 

●​ Encourages exploration of uncertain actions.​
 

●​ Allows explicit control of confidence through constant K.​
 

●​ Does not require a separate exploration phase; both aspects are integrated.​
 

 
Limitations (From the Screenshots) 

Naïve Method 
●​ Hard to decide how many trials are enough for accurate payoff estimation.​

 

●​ May require many exploratory trials, wasting effort.​
 

●​ If the final choice is wrong, the gambler uses the wrong machine forever.​
 

●​ Unrealistic for real problems due to its fixed strategy.​
 

ε-Greedy 
●​ Choosing ε is difficult and context-dependent.​

 

●​ Small ε may take long to find the correct best option.​
 

●​ Large ε wastes trials on random exploration.​
 

Upper-Bounding (UCB) 
●​ Requires maintaining statistical confidence intervals.​

 

●​ Larger K values cause excessive exploration.​
 

●​ Still stateless, so unsuitable for problems requiring state-dependent decisions. 

 
 

5 a Explain the basic framework of reinforcement learning with a neat diagram. 
 
Solution: Diagram- 2m 
Explanation- 3M 
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Framework of Reinforcement Learning (Based on the Figure) 

The figure presents the broad framework of reinforcement learning, which describes how an 
agent interacts with an environment to learn actions that maximize rewards over time. 

1. Agent Takes an Action (aₜ) 
●​ The agent (mouse) observes its current state sts_tst​ (its position in the maze).​

 

●​ It chooses and performs an action—for example, turn left.​
 

2. Environment Returns a Reward (rₜ) 
●​ After the action, the environment provides feedback.​

 

●​ The reward tells whether the action was good or bad—for example, cheese = reward, no 
cheese = no reward.​
 

3. State Transition (sₜ → sₜ₊₁) 
●​ The environment then moves the agent to a new state st+1s_{t+1}st+1​.​

 

●​ Example: After turning left, the mouse enters a new part of the maze.​
 

4. Agent Updates Its Knowledge 
●​ Based on the reward, the agent updates its internal knowledge (synaptic weights).​

 

●​ Good actions get strengthened; bad actions get weakened.​
 

 



5 b Discuss the reasons for using Reinforcement Learning in dynamic and real-time environments. 
Solution: any 3 reason 
1. RL Learns Directly From Interaction With the Environment 
As shown in the framework: 

●​ The agent takes an action​
 

●​ The environment returns a reward​
 

●​ The agent updates its strategy​
 

This makes RL ideal for environments that cannot be fully modeled beforehand and must be 
learned through trial-and-error. 

 
2. Ability to Adapt to Uncertain and Changing Conditions 
The text about bandit problems explains that payoffs are unknown and must be learned by 
exploring machines.​
 This reflects real-time environments where: 

●​ system behavior changes,​
 

●​ rewards vary over time,​
 

●​ past observations may not be sufficient.​
 

RL continues to adjust actions based on the latest rewards, making it effective in non-static 
environments. 

 
3. Handles the Exploration–Exploitation Trade-off 
The screenshots emphasize this trade-off: 

●​ Too much exploration wastes resources​
 

●​ Too much exploitation risks getting stuck with the wrong choice​
 

Algorithms like ε-greedy and Upper Confidence Bound (UCB) are designed to continuously 
balance discovering new strategies (exploration) with using the best-known strategy 
(exploitation). 

Dynamic environments require this constant balance because conditions may shift. 

 
4. Works Even Without a Full State Model 
The multi-armed bandit is introduced as the simplest case of reinforcement learning, where there 
is no notion of state. 

This shows that RL can operate even when: 

●​ full system models are unavailable,​
 

●​ transitions are unknown,​
 

●​ only rewards from actions are visible.​
 

This is realistic for many real-time problems such as online recommendation, network routing, 
robotics, etc. 
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5. Enables Continuous Improvement Over Time 
The framework diagram shows how: 

●​ rewards influence the agent’s future decisions​
 

●​ the agent gradually selects actions that lead to higher long-term reward​
 

In dynamic systems, RL provides ongoing learning, not one-time optimization.​
 It adapts behavior as new data arrives. 

 
6. Suitable for Delayed and Sequential Rewards 
The framework illustrates that the reward for an action may not be immediate.​
 RL is built for situations where: 

●​ actions influence future outcomes,​
 

●​ rewards come after several steps,​
 

●​ the agent must learn the long-term consequences of actions.​
 

Dynamic environments frequently have such dependencies. 

6 Apply the principles of reinforcement learning to demonstrate how a self-driving car can be 
modeled as an intelligent agent. 
Solution:   10M  
 
Modeling a Self-Driving Car as an RL Intelligent Agent 

A self-driving car fits perfectly into the RL agent-environment interaction loop. 

Agent 
The intelligent control system inside the car: 

●​ perception module​
 

●​ decision-making module​
 

●​ motion planner​
 

Environment 
Everything outside the car: 

●​ road structure​
 

●​ traffic signals​
 

●​ pedestrians​
 

●​ other vehicles​
 

●​ weather conditions​
 

The environment changes continuously—ideal for RL. 

 
State (sts_tst​) 
Information available to the car at any moment: 

●​ lane position​
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●​ speed​
 

●​ distance to nearby vehicles​
 

●​ camera/LiDAR perceptions​
 

●​ traffic light status​
 

Actions (ata_tat​) 
The car's possible decisions: 

●​ accelerate​
 

●​ brake​
 

●​ steer left/right​
 

●​ change lane​
 

●​ overtake​
 

●​ stop​
 

 
Reward (rtr_trt​) 
Rewards guide learning: 

●​ positive: staying in lane, smooth driving, obeying signals, reaching destination​
 

●​ negative: collisions, sharp braking, lane departure, traffic violations​
 

 
Learning Process 

1.​ The car observes its current state.​
 

2.​ It selects an action (e.g., brake, steer left).​
 

3.​ The environment reacts (slows down, avoids collision).​
 

4.​ Reward is given.​
 

5.​ The system updates its policy to improve future actions.​
 

 
Faculty Signature​ CCI Signature​ HOD Signature 
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