

Internal Assessment Test 2 – November 2025

Sub: Deep Learning and Reinforcement Learning Sub Code: BAI701 Branch: AIML
Date: Duration: 90 min Max

Marks:
50 Sem/Sec: VII (A& B) OBE

Scheme of Evaluation MAR
KS

CO RB
T

1 Explain the working mechanism of a Recurrent Neural Network (RNN) and explain why it is
effective for handling sequential or time-dependent data.
Solution: Explanation 10M
A Recurrent Neural Network (RNN) is a type of neural network specially designed for sequential
data. Unlike feed-forward networks, an RNN has loops in its architecture, which allow
information from previous time steps to influence the current output. As stated in the PDF, “RNN
has recurrence in it and the current output is influenced not only from the current input but also
from the past inputs.”

How an RNN Works
An RNN processes inputs one time-step at a time:

1.​ At each time-step t, the RNN receives:​

○​ Current input xtx_txt​​

○​ Hidden state from previous step ht−1h_{t-1}ht−1​​

2.​ It combines them to produce:​

○​ New hidden state hth_tht​​

○​ Output yty_tyt​​

The hidden state acts as the memory, storing relevant information from earlier steps. This allows
the “unfolded computational graph” of the RNN to propagate information across time. The PDF
states that the “unfolded computational graph in an RNN allows considering the historical context
or information”

1.​ RNN - Specialized for processing a sequence data
eg. This movie is good, really not bad vs. This movie is bad, really not good.

2.​ RNN - Sharing parameters across different parts of a model

•​ Such sharing is particularly important when a specific piece of information can occur at
multiple positions within the sequence.

•​ For example, consider the two sentences “I went to Nepal in 2009” and “In 2009, I went to
Nepal.”

•​ If we ask a machine learning model to read each sentence and extract the year in which the
narrator went to Nepal, we would like it to recognize the year 2009 as the relevant piece of
information, whether it appears in the sixth word or the second word of the sentence.

• Feed Forward
�​ Separate Parameter for each Input
�​ Needs to Learn ALL of the Rules of Languages

• CNN
�​ Output of CNN is a Small Number of Neighboring Member of Inputs.
�​ The idea of parameter sharing manifests in the application of the same convolution

10 CO2 L2

kernel at each time step.
�​ Recurrent networks share parameters in a different way.
�​ Each member of the output is a function of the previous members of the output.
�​ Each member of the output is produced using the same update rule applied to the

previous outputs.
�​ This recurrent formulation results in the sharing of parameters through a very deep

computational graph.
2 Analyze the role of Gradient Descent in training RNNs and explain how vanishing and exploding

gradients influence learning performance and stability.

Solution: 10
The recurrent neural network of figure 10.3 and equation 10.8 is universal in the sense that any
function computable by a Turing machine can be computed by such a recurrent network of a finite
size.
We now develop the forward propagation equations for the RNN depicted in figure 10.3.
The figure does not specify the choice of activation function for the hidden units.
Here we assume the hyperbolic tangent activation function. Also, the figure does not specify
exactly what form the output and loss function take.

10 CO2 L3

3 Describe how an LSTM network improves learning in long-term sequential data compared to a
conventional RNN.
Solution: 10M

10 CO2 L2

4 Explain the concept of stateless algorithms in the context of reinforcement learning and describe
how they function in decision-making systems. Also, discuss their suitability along with their basic
advantages and limitations.

Solution: 3 methods - 10 M
Stateless Algorithms in Reinforcement Learning — Explanation Based on the Screenshots

Concept of Stateless Algorithms
From the screenshots, the discussion focuses on the multi-armed bandit problem, which is the
simplest case of reinforcement learning. In this setting:

●​ Every trial provides the same probabilistic reward distribution for a given action.​

●​ There is no notion of state, unlike games such as chess where the next decision depends
on the board state.​

Thus, stateless algorithms are decision-making methods where:

●​ The agent does not track or update a system state.​

●​ Each action’s reward is assumed to depend only on the action itself, not on any external or
changing state.​

The agent simply learns the expected payoff of each action (slot machine) and bases its decision
on that.

10 CO3 L2

How Stateless Algorithms Function

The screenshots describe three stateless strategies:

1. Naïve Algorithm
●​ Play each machine a fixed number of times (exploration).​

●​ Then permanently select the machine with the highest observed payoff (exploitation).​

●​ Very simple but rigid.​

2. ε-Greedy Algorithm
●​ With probability ε, choose a random machine (exploration).​

●​ With probability 1 − ε, choose the machine with the best current average payoff
(exploitation).​

●​ Ensures one is not trapped forever in a wrong strategy.​

3. Upper-Bounding (UCB-like) Methods
●​ For each machine, compute an upper confidence bound:​

 Ui=Qi+CiU_i = Q_i + C_iUi​=Qi​+Ci​​
 where​

○​ QiQ_iQi​ = estimated mean reward​

○​ CiC_iCi​ = confidence interval (bonus for uncertainty)​

●​ Machines with fewer trials get a larger bonus, encouraging exploration.​

●​ Merges exploration and exploitation automatically.​

All these methods use only past rewards of actions, not any environmental state.​
 Hence they are stateless.

Suitability of Stateless Algorithms

Stateless algorithms are suitable when:

●​ The environment does not change with actions.​

●​ Rewards depend only on which action is chosen, not on any world state.​

●​ The problem resembles a multi-armed bandit rather than a full RL environment.​

Examples include:

●​ Choosing advertisements​

●​ Selecting network routing paths​

●​ Online recommendation systems​

Advantages (Based on the Screenshots)

Naïve Method
●​ Simple to implement.​

●​ Conceptually easy.​

ε-Greedy
●​ Prevents being “trapped” in a wrong strategy.​

●​ Uses the best strategy for most trials.​

●​ Balances exploration and exploitation.​

Upper-Bounding Methods
●​ More efficient learning of payoffs.​

●​ Encourages exploration of uncertain actions.​

●​ Allows explicit control of confidence through constant K.​

●​ Does not require a separate exploration phase; both aspects are integrated.​

Limitations (From the Screenshots)

Naïve Method
●​ Hard to decide how many trials are enough for accurate payoff estimation.​

●​ May require many exploratory trials, wasting effort.​

●​ If the final choice is wrong, the gambler uses the wrong machine forever.​

●​ Unrealistic for real problems due to its fixed strategy.​

ε-Greedy
●​ Choosing ε is difficult and context-dependent.​

●​ Small ε may take long to find the correct best option.​

●​ Large ε wastes trials on random exploration.​

Upper-Bounding (UCB)
●​ Requires maintaining statistical confidence intervals.​

●​ Larger K values cause excessive exploration.​

●​ Still stateless, so unsuitable for problems requiring state-dependent decisions.

5 a Explain the basic framework of reinforcement learning with a neat diagram.

Solution: Diagram- 2m
Explanation- 3M

5 CO3 L2

Framework of Reinforcement Learning (Based on the Figure)

The figure presents the broad framework of reinforcement learning, which describes how an
agent interacts with an environment to learn actions that maximize rewards over time.

1. Agent Takes an Action (aₜ)
●​ The agent (mouse) observes its current state sts_tst​ (its position in the maze).​

●​ It chooses and performs an action—for example, turn left.​

2. Environment Returns a Reward (rₜ)
●​ After the action, the environment provides feedback.​

●​ The reward tells whether the action was good or bad—for example, cheese = reward, no
cheese = no reward.​

3. State Transition (sₜ → sₜ₊₁)
●​ The environment then moves the agent to a new state st+1s_{t+1}st+1​.​

●​ Example: After turning left, the mouse enters a new part of the maze.​

4. Agent Updates Its Knowledge
●​ Based on the reward, the agent updates its internal knowledge (synaptic weights).​

●​ Good actions get strengthened; bad actions get weakened.​

5 b Discuss the reasons for using Reinforcement Learning in dynamic and real-time environments.
Solution: any 3 reason
1. RL Learns Directly From Interaction With the Environment
As shown in the framework:

●​ The agent takes an action​

●​ The environment returns a reward​

●​ The agent updates its strategy​

This makes RL ideal for environments that cannot be fully modeled beforehand and must be
learned through trial-and-error.

2. Ability to Adapt to Uncertain and Changing Conditions
The text about bandit problems explains that payoffs are unknown and must be learned by
exploring machines.​
 This reflects real-time environments where:

●​ system behavior changes,​

●​ rewards vary over time,​

●​ past observations may not be sufficient.​

RL continues to adjust actions based on the latest rewards, making it effective in non-static
environments.

3. Handles the Exploration–Exploitation Trade-off
The screenshots emphasize this trade-off:

●​ Too much exploration wastes resources​

●​ Too much exploitation risks getting stuck with the wrong choice​

Algorithms like ε-greedy and Upper Confidence Bound (UCB) are designed to continuously
balance discovering new strategies (exploration) with using the best-known strategy
(exploitation).

Dynamic environments require this constant balance because conditions may shift.

4. Works Even Without a Full State Model
The multi-armed bandit is introduced as the simplest case of reinforcement learning, where there
is no notion of state.

This shows that RL can operate even when:

●​ full system models are unavailable,​

●​ transitions are unknown,​

●​ only rewards from actions are visible.​

This is realistic for many real-time problems such as online recommendation, network routing,
robotics, etc.

5 CO3 L2

5. Enables Continuous Improvement Over Time
The framework diagram shows how:

●​ rewards influence the agent’s future decisions​

●​ the agent gradually selects actions that lead to higher long-term reward​

In dynamic systems, RL provides ongoing learning, not one-time optimization.​
 It adapts behavior as new data arrives.

6. Suitable for Delayed and Sequential Rewards
The framework illustrates that the reward for an action may not be immediate.​
 RL is built for situations where:

●​ actions influence future outcomes,​

●​ rewards come after several steps,​

●​ the agent must learn the long-term consequences of actions.​

Dynamic environments frequently have such dependencies.

6 Apply the principles of reinforcement learning to demonstrate how a self-driving car can be
modeled as an intelligent agent.
Solution: 10M

Modeling a Self-Driving Car as an RL Intelligent Agent

A self-driving car fits perfectly into the RL agent-environment interaction loop.

Agent
The intelligent control system inside the car:

●​ perception module​

●​ decision-making module​

●​ motion planner​

Environment
Everything outside the car:

●​ road structure​

●​ traffic signals​

●​ pedestrians​

●​ other vehicles​

●​ weather conditions​

The environment changes continuously—ideal for RL.

State (sts_tst​)
Information available to the car at any moment:

●​ lane position​

10 CO3 L3

●​ speed​

●​ distance to nearby vehicles​

●​ camera/LiDAR perceptions​

●​ traffic light status​

Actions (ata_tat​)
The car's possible decisions:

●​ accelerate​

●​ brake​

●​ steer left/right​

●​ change lane​

●​ overtake​

●​ stop​

Reward (rtr_trt​)
Rewards guide learning:

●​ positive: staying in lane, smooth driving, obeying signals, reaching destination​

●​ negative: collisions, sharp braking, lane departure, traffic violations​

Learning Process

1.​ The car observes its current state.​

2.​ It selects an action (e.g., brake, steer left).​

3.​ The environment reacts (slows down, avoids collision).​

4.​ Reward is given.​

5.​ The system updates its policy to improve future actions.​

Faculty Signature​ CCI Signature​ HOD Signature

	How an RNN Works
	Stateless Algorithms in Reinforcement Learning — Explanation Based on the Screenshots
	Concept of Stateless Algorithms

	How Stateless Algorithms Function
	1. Naïve Algorithm
	2. ε-Greedy Algorithm
	3. Upper-Bounding (UCB-like) Methods

	Suitability of Stateless Algorithms
	Advantages (Based on the Screenshots)
	Naïve Method
	ε-Greedy
	Upper-Bounding Methods

	Limitations (From the Screenshots)
	Naïve Method
	ε-Greedy
	Upper-Bounding (UCB)

	Framework of Reinforcement Learning (Based on the Figure)
	1. Agent Takes an Action (aₜ)
	2. Environment Returns a Reward (rₜ)
	3. State Transition (sₜ → sₜ₊₁)
	4. Agent Updates Its Knowledge
	1. RL Learns Directly From Interaction With the Environment
	2. Ability to Adapt to Uncertain and Changing Conditions
	3. Handles the Exploration–Exploitation Trade-off
	4. Works Even Without a Full State Model
	5. Enables Continuous Improvement Over Time
	6. Suitable for Delayed and Sequential Rewards

	Modeling a Self-Driving Car as an RL Intelligent Agent
	Agent
	Environment
	State (sts_tst​)
	Actions (ata_tat​)
	Reward (rtr_trt​)
	Learning Process

