

Internal Assessment Test II –January 2026
ANSWER KEY

Sub: Data Structures and Applications Sub
Code:

BCS304 Branch: AIML/CSE
AIML

Date: 8.1.26 Duration: 90 min Max Marks: 50 Sem/Sec
:

III A, B, C OBE

Answer any FIVE FULL Questions MARKS
CO R B

T

1 a Define Binary Search tree. Construct a binary search tree (BST) for the
following elements: 100, 85, 45, 55, 120, 20, 70, 90, 115, 65, 130, 145.
Traverse using in-order, pre-order, and post-order traversal techniques.

BST definition and construction -3Marks

A Binary Search Tree (BST) is a binary tree in which:

●​ Each node has at most two children.​

●​ The left subtree of a node contains values less than the node’s key.​

●​ The right subtree of a node contains values greater than the node’s
key

Traversal-3x1=3marks

In-order:

20, 45, 55, 65, 70, 85, 90, 100, 115, 120, 130, 145

Pre-order:

100, 85, 45, 20, 55, 70, 65, 90, 120, 115, 130, 145

Post-order:​

6M CO4 L3

 20, 65, 70, 55, 45, 90, 85, 115, 145, 130, 120, 100

1b Construct a binary tree from the Inorder and Postorder sequence given

below In-order: GDHBAEICF
Post-order: GHDBIEFCA

Construction of Tree-4Marks

4M CO4 L 3

2a Write C function for Depth First Search(DFS) and show the graph traversal by
taking an example.

DFS
Algorithm-3Marks

void DFS(int v)

{

 int i;

 visited[v] = 1;
// Mark current
vertex as visited

 printf("%d ", v);
// Visit the vertex

 for (i = 1; i <= n; i++)

 {

 if (adj[v][i] == 1 && visited[i] == 0)

 {

 DFS(i);
// Recursive call

 }

 }

5M CO4 L 2

}

Example-3Marks
2b Define graph. Explain Adjacency list and Adjacency matrix by taking an

example.

Graph-1Mark

A graph is a mathematical structure used to represent relationships between
objects.

●​ It consists of:​

○​ Vertices (nodes): Represent objects.​

○​ Edges (links): Represent connections or relationships between
the vertices.​

●​ Notation: G = (V, E)​

○​ V = set of vertices​

○​ E = set of edges

Adjacency List-1 Mark

Adjacency List

●​ Each vertex has a list of vertices it is connected to

Example -1Mark

Adjacency Matrix -1Mark

Adjacency Matrix

●​ A 2D array of size n × n where n = number of vertices​

●​ Element matrix[i][j] = 1 if there is an edge from vertex i to
vertex j (0 otherwise)

Example -1Mark

5M CO4 L 2

3a Define hashing. Explain different hashing functions with examples.

Hashing-2Marks
 Hashing function-
i)Division Method 2Marks
 ii)MidsquareHash Functio n2 Marks
iii)Folding Method 2Marks
iv)Digit analysis-1Mark
v)Converting keys to integers-1Mark

10M CO5 L 2

Hashing – 2 Marks

Definition:​
 Hashing is a technique used to map keys to indices of a hash table using a
hash function to allow fast insertion, deletion, and searching.

Hashing Function – Methods

i) Division Method – 2 Marks

●​ Formula:​

h(k)=kmod  mh(k) = k \mod mh(k)=kmodm

●​ k = key, m = size of the hash table​

●​ Example: Key = 123, Table size = 10 → 123mod  10=3123 \mod 10 =
3123mod10=3​

●​ Pros: Simple and fast​

●​ Cons: Table size should preferably be a prime number to reduce
collisions​

ii) Mid-Square Method – 2 Marks

●​ Steps:​

1.​ Square the key: k2k^2k2​

2.​ Take the middle digits as the hash value​

●​ Example: Key = 123 → 1232=15129123^2 = 151291232=15129 →
middle digits = 512 → index​

●​ Pros: Good distribution​

●​ Cons: Slightly more computation​

iii) Folding Method – 2 Marks

●​ Steps:​

1.​ Divide key into equal parts​

2.​ Add the parts together​

3.​ Apply modulo table size (optional)​

●​ Example: Key = 123456, divide into 3 parts: 12, 34, 56 → 12+34+56 =

102 → index​

●​ Pros: Handles large keys easily​

iv) Digit Analysis – 1 Mark

●​ Use specific digits of the key as the hash value​

●​ Example: Key = 45678 → use last 2 digits → 78 → index​

v) Converting Keys to Integers – 1 Mark

●​ For alphanumeric keys, convert letters to numbers before hashing​

●​ Example: Key = "ABC" → A=1, B=2, C=3 → 123 → use in hash
function

4a What is a leftist tree? Give the C declaration of it .Explain how meld operation

is applied to two minimum leftist tree with the help of an example.

 Leftist Tree

Definition (2 Marks):​
 A Leftist Tree is a type of priority queue implemented as a binary tree
where:

1.​ It satisfies the heap property: the key at each node is smaller
(min-leftist) or larger (max-leftist) than the keys of its children.​

2.​ It satisfies the leftist property: the rank (distance to nearest null node,
also called null path length, npl) of the left child is always greater
than or equal to the rank of the right child.​

The purpose of the leftist property is to keep the tree skewed to
the left, which ensures that merging (meld) operations are
efficient.

10M CO5 L 2

C Declaration (2 Marks)
typedef struct LeftistNode {
 int key; // Value of the node
 int npl; // Null Path Length
 struct LeftistNode *left; // Pointer to left
child
 struct LeftistNode *right; // Pointer to right
child
} LeftistNode;

typedef LeftistNode* LeftistTree; // Pointer to
root of the tree

●​ npl = null path length = shortest distance from node to a node without
two children (null node).​

Meld Operation (6 Marks)

Meld Operation:​
 The meld operation combines two leftist trees into one while maintaining
heap and leftist properties.​
 Steps (for min-leftist tree):

1.​ Compare the roots of both trees. Make the root with the smaller key
the new root.​

2.​ Recursively meld the right child of this root with the other tree.​

3.​ Swap left and right children if necessary to maintain the leftist
property (npl(left) ≥ npl(right)).​

4.​ Update the npl of the root.

5a Write C Functions for the following,

i) Inserting a node at the beginning of a Doubly linked list.

C function-2.5Marks
Node* insertAtBeginning(Node* head, int newData) {
 // Step 1: Allocate memory for the new node
 Node* newNode = (Node*)malloc(sizeof(Node));
 if (!newNode) {
 printf("Memory allocation failed\n");
 return head; // return existing head if malloc fails
 }

 // Step 2: Assign data to the new node

5M CO3 L 2

 newNode->data = newData;
 newNode->prev = NULL; // New node becomes the first node
 newNode->next = head; // Next points to the current head

 // Step 3: Update previous head's prev pointer if list is not empty
 if (head != NULL) {
 head->prev = newNode;
 }

 // Step 4: Return new node as the new head
 return newNode;
}

 ii)Deleting a node at the end of the Doubly linked list.

C function-2.5Marks
Node* deleteAtEnd(Node* head) {
 // If the list is empty, nothing to delete
 if (head == NULL) {
 printf("List is empty.\n");
 return NULL;
 }

 // If the list has only one node
 if (head->next == NULL) {
 free(head);
 return NULL; // List becomes empty
 }

 // Traverse to the last node
 Node* temp = head;
 while (temp->next != NULL) {
 temp = temp->next;
 }

 // Update previous node's next to NULL
 temp->prev->next = NULL;

 // Free the last node
 free(temp);

 // Return head of the list
 return head;
}

5b Write C functions for the following,
a)​To search an item within a SLL(Singly Linked List)

C function-2 .5Marks
Node* searchSLL(Node* head, int key) {
 Node* temp = head;

 // Traverse the list
 while (temp != NULL) {

5M CO3 L 2

 if (temp->data == key) {
 return temp; // Item found, return pointer to the node
 }
 temp = temp->next;
 }

 // Item not found
 return NULL;
}

b)​To concatenate two SLL.

C function-2.5Marks
Node* concatenateSLL(Node* head1, Node* head2) {
 // If the first list is empty, return the second list
 if (head1 == NULL)
 return head2;

 // Traverse to the end of the first list
 Node* temp = head1;
 while (temp->next != NULL) {
 temp = temp->next;
 }

 // Link the last node of list1 to head of list2
 temp->next = head2;

 return head1; // Return the head of the concatenated list
}

6a Write recursive C functions for inorder, preorder and postorder traversals
of a binary tree. Also, find all the traversals for the given tree.

Each traversal -3 Marks
Preorder ABDEHICFG
INORDER: DBHEIAFCG
POSTODER:DHIEBFGCA

C function for each traversal -3Marks
/ Preorder traversal: Root -> Left -> Right
void preorder(Node* root) {
 if (root == NULL) return;
 printf("%c ", root->data);
 preorder(root->left);
 preorder(root->right);
}

// Inorder traversal: Left -> Root -> Right
void inorder(Node* root) {
 if (root == NULL) return;
 inorder(root->left);

6M CO3 L 3

 printf("%c ", root->data);
 inorder(root->right);
}

// Postorder traversal: Left -> Right -> Root
void postorder(Node* root) {
 if (root == NULL) return;
 postorder(root->left);
 postorder(root->right);
 printf("%c ", root->data);
}

6b Define Binary tree. Explain the representation of a binary tree with a suitable
example.

Definition (2 Marks)

A binary tree is a hierarchical data structure in which each node has at most two
children, called left child and right child.

Array and Linked list representation of Binary tree-2Marks

4M CO3 L 2

	Adjacency List
	Adjacency Matrix
	Hashing – 2 Marks
	Hashing Function – Methods
	i) Division Method – 2 Marks
	ii) Mid-Square Method – 2 Marks
	iii) Folding Method – 2 Marks
	iv) Digit Analysis – 1 Mark
	v) Converting Keys to Integers – 1 Mark
	 Leftist Tree
	C Declaration (2 Marks)
	Meld Operation (6 Marks)
	Definition (2 Marks)

