
USN

Internal Assessment Test 2 – January 2026

Sub: Object Oriented Programming with JAVA Sub Code: BCS306A Branch: AIML/CSE

AIML

Date

:

/01/26 Duration: 90 min Max Marks: 50 Sem/Sec: III A, B & C OBE

Answer any FIVE FULL Questions MAR

KS

CO RB

T

1a Explain method overriding and dynamic method dispatch with example.

1. Method Overriding(3 marks)

Method overriding occurs when a subclass provides a specific implementation of a method that
is already defined in its superclass.

Rules for Method Overriding:

• Method name and parameter list must be exactly the same.

• The method must be inherited from the superclass.

• Access level cannot be more restrictive than the superclass method.

• Overriding happens only in runtime polymorphism.

2. Dynamic Method Dispatch(3 marks)
Dynamic method dispatch is the mechanism by which a call to an overridden method is resolved at
runtime, based on the object being referenced, not the reference type.

In Java, this is achieved using a superclass reference pointing to a subclass object.

6 CO3 L2

1b Explain abstract classes and interfaces. Compare both.

1. Abstract Class (2 marks)
An abstract class is a class that cannot be instantiated and may contain abstract
methods (without body) as well as concrete methods (with body). It is used
when classes share common behavior and state.

Key Features

• Declared using the abstract keyword

• Can have abstract and non-abstract methods

• Can contain instance variables

• Can have constructors

• Supports single inheritance (extends one class)

2. Interface (2 marks)
An interface is a collection of abstract methods and constants that represents a
contract. A class implementing an interface must provide implementations for all
its methods.

Key Features

• Declared using the interface keyword

• All methods are public and abstract by default

• Variables are public, static, and final

• No constructors

• Supports multiple inheritance

4

CO3 L3

2a Explain multilevel inheritance with a Java program.

Multilevel Inheritance in Java(3 marks)
Multilevel inheritance is a type of inheritance where a class is derived from another class, which

itself is derived from another class. In simple terms: Class A → Class B → Class C
Here, Class C inherits the properties and methods of both Class A and Class B.
Example(3 marks)

6 CO3 L2

2b Explain final keyword with respect to class, method, and variable.

1. final Variable(1)
A final variable is treated as a constant. Its value cannot be changed once assigned.
Key Points

• Must be initialized only once

• Can be initialized at declaration, in constructor, or in initializer block

• Prevents reassignment

2. final Method(1.5)

A final method cannot be overridden by subclasses.

4 CO3 L3

 It is used to prevent modification of method behavior in child classes.

Key Points

• Method implementation remains unchanged in subclasses

• Supports method overloading but not overriding

3. final Class(1.5)
A final class cannot be inherited. It is used when a class should not be extended for security or
design reasons. Key Points

• Prevents inheritance

• All methods are implicitly final

3a Explain exception handling in Java with suitable examples.

Exception Handling in Java(3 marks)
Exception handling in Java is a mechanism to handle runtime errors so that the normal flow of the
program can be maintained. An exception is an event that occurs during program execution and
disrupts normal execution.

1. Types of Exceptions

a) Checked Exceptions

• Checked at compile time

• Must be handled using try-catch or throws

• Example: IOException, SQLException

b) Unchecked Exceptions

• Occur at runtime

• Subclasses of RuntimeException

• Example: ArithmeticException, NullPointerException

2. Exception Handling Keywords

Keyword Purpose

try Contains code that may cause an exception

catch Handles the exception

finally Executes whether exception occurs or not

throw Explicitly throws an exception

throws Declares exceptions in method signature

Example(2 marks)

5 CO4 L3

3b Explain user-defined exceptions with a program.

User-Defined Exceptions in Java(3 marks)
A user-defined (custom) exception is an exception created by the programmer to handle
application-specific error conditions.

It is created by extending the Exception class (for checked exceptions) or RuntimeException
class (for unchecked exceptions).

Steps to Create a User-Defined Exception

1. Create a class that extends Exception or RuntimeException

2. Provide a constructor to pass the error message

3. Use throw to explicitly throw the exception

4. Handle it using try-catch

Example (2 marks)

5 CO4 L3

4a Explain throw and throws keywords with examples.

1. throw Keyword(2.5 marks)
The throw keyword is used to explicitly throw a single exception from a method or block of
code.

Key Points

• Used inside a method or block

• Can throw one exception at a time

• Used with exception objects

• Transfers control to the nearest catch block

2. throws Keyword(2.5 marks)
The throws keyword is used to declare exceptions that a method may pass to the calling method
instead of handling them.

Key Points

• Used in method signature

• Can declare multiple exceptions

• Mainly used for checked exceptions

• Responsibility of handling exception is passed to caller

5 CO4 L2

4b Explain chained exceptions with example.

A chained exception is an exception that is caused by another exception. Java provides this

mechanism to preserve the original cause of an exception while throwing a new one.

This helps in better debugging and error tracing.

Why Chained Exceptions Are Needed

• To wrap a low-level exception with a higher-level exception

• To maintain the root cause of the error

• Common in layered applications (DAO → Service → Controller)

How Chaining Works in Java

Java supports chained exceptions using:

• Constructor that accepts a cause

• initCause() method

• getCause() method

5 CO4 L2

5a What is thread? Explain the two ways to creating a thread in java with an example. A thread is

the smallest unit of execution within a program. In Java, a thread represents a separate path

of execution, allowing multiple tasks to run concurrently within a single program.

Java supports multithreading, which improves:

• Program responsiveness

• CPU utilization

• Performance in concurrent applications

Two Ways to Create a Thread in Java

Java provides two main approaches to create a thread:

1. By Extending the Thread Class

Steps

1. Create a class that extends Thread

2. Override the run() method

3. Create an object of the class

4. Call the start() method

2. By Implementing the Runnable Interface

Steps

1. Create a class that implements Runnable

2. Override the run() method

3. Pass the object to a Thread class constructor

4. Call the start() method

5 CO5 L3

5b Explain Thread Synchronization with suitable example.

Thread Synchronization in Java

Thread synchronization is a mechanism used to control access to shared resources in a

multithreaded environment. It ensures that only one thread at a time can access a critical

section of code, thereby preventing data inconsistency and race conditions.

Why Synchronization Is Needed

When multiple threads access a shared object simultaneously:

• Data may become inconsistent

• Output may be unpredictable

• Race conditions can occur

Types of Synchronization in Java

1. Synchronized Method

2. Synchronized Block

3. Static Synchronization (class-level lock)

5 CO5 L3

6a Explain Enumerations in Java including: values(), valueOf()

Enumerations (Enums) in Java

An Enumeration (enum) in Java is a special data type used to define a fixed set of named
constants.

6 CO5 L3

 Enums improve type safety, readability, and maintainability compared to using constants like int
or String.

Defining an Enum

enum Day {
 MONDAY, TUESDAY, WEDNESDAY, THURSDAY, FRIDAY, SATURDAY, SUNDAY }

• Day is an enum

• Each identifier is a constant object of type Day

values() Method
The values() method returns an array of all enum constants in the order they are declared.
Example

class ValuesExample {

 public static void main(String[] args) {

 for (Day d : Day.values()) {

 System.out.println(d);

 }

 }

}

valueOf() Method

The valueOf() method returns the enum constant corresponding to the specified string name.
Example

class ValueOfExample {

 public static void main(String[] args) {

 Day d = Day.valueOf("FRIDAY");

 System.out.println(d);

 }

}

6b Explain Wrapper Classes and Autoboxing with examples.

1. Wrapper Classes
Wrapper classes in Java provide a way to convert primitive data types into objects. This is
required because Java collections and many APIs work only with objects, not primitives. class
WrapperDemo {

 public static void main(String[] args) {

 int a = 10; // primitive

 Integer obj = Integer.valueOf(a); // wrapping

 System.out.println(obj);

 }

}

2. Autoboxing
Autoboxing is the automatic conversion of a primitive type into its corresponding wrapper
object by the Java compiler.

class AutoboxingDemo {

 public static void main(String[] args) {

 int a = 20;

 Integer obj = a; // autoboxing

 System.out.println(obj);

 }

}

4 CO5 L3

