L6190 N I O O A

Internal Assessment Test II -November 2025

Sub: | DEEP LEARNING g‘éze_ BCA701 | BTN | ogp ATML
Date: Duration: | 90 min Max 50 Sem/Sec VII C OBE
Marks: :
Answer any FIVE FULL Questions MAR CO RB
KS T

I a |You are designing a Convolutional Neural Network (CNN) to classify handwritten | 10 | CO4 | L3
digits from noisy images. Illustrate how you would choose the kernel size, number
of filters, pooling strategy, and activation function to handle noise effectively.
Justify how each chosen CNN component contributes to improving accuracy in
this scenario.

2 a |Discuss the variants of the basic convolution function. 10 | CO4 | L2
3 a [Explain the various datatypes used with CNN. 5 CO4 | L2
3 b Differentiate between Stride and Pooling in CNN. 5 CO4 | L2

USN| | |]
Internal Assessment Test II — November 2025
Sub: | DEEP LEARNING g‘éze, BCA701 | Braneh | cop AmmL
Date: Duration: | 90 min Max 50 Sem/Sec VII-C Duration:
Marks: :
Answer any FIVE FULL Questions MAR CO RB
KS T

la |You are designing a Convolutional Neural Network (CNN) to classify handwritten | 10 | CO4 | L3
digits from noisy images. Illustrate how you would choose the kernel size, number
of filters, pooling strategy, and activation function to handle noise effectively.
Justify how each chosen CNN component contributes to improving accuracy in
this scenario.

2a Discuss the variants of the basic convolution function. 10 CO4 | L2

3a |[Explain the various datatypes used with CNN. 5 CO4 | L2

3b Differentiate between Stride and Pooling in CNN. 5 CO4 | L2

Explain Bidirectional RNN and Deep Recurrent Networks. 10 | COS5 | L2

5 Given a sequence where long-term dependencies are crucial, explain how each 10 | COS5 | L2
LSTM gate (input gate, forget gate, and output gate) would operate on the sequence
during processing. [llustrate how gate activations change the cell state and hidden
state at each step, and analyze how modifying the gate values would affect the
model’s ability to retain or eliminate information.

6 Explain how Recurrent Neural Network (RNN) processes the data sequence 10 | COS5 | L2
using computational graphs.

Faculty Signature CCI Signature HOD Signature
4 Explain Bidirectional RNN and Deep Recurrent Networks. 10 | CO5 | L2
5 Given a sequence where long-term dependencies are crucial, explain how each 10 | COS5 | L2

LSTM gate (input gate, forget gate, and output gate) would operate on the sequence
during processing. Illustrate how gate activations change the cell state and hidden
state at each step, and analyze how modifying the gate values would affect the
model’s ability to retain or eliminate information.

6 Explain how Recurrent Neural Network (RNN) processes the data sequence 10 | CO5 | L2
using computational graphs.

Faculty Signature CCI Signature HOD Signature

L6155 8 A A

Internal Assessment Test II -November 2025
Answer Key

Sub:

DEEP LEARNING BCA701
Code:

Sub Branch

CSE AIML

Date:

Duration: | 90 min Max 50 Sem/Sec VII C
Marks: :

OBE

Answer any FIVE FULL Questions

MAR
KS

CO |RB
T

la

'You are designing a Convolutional Neural Network (CNN) to classify handwritten
digits from noisy images. Illustrate how you would choose the kernel size, number
of filters, pooling strategy, and activation function to handle noise effectively.
Justify how each chosen CNN component contributes to improving accuracy in
this scenario.

Answer :-
Diagram 2M

Complex layer terminology

Mext layver

I

Convolutional Laver

Pooling stage

3

Dtector stage:

Nonlinearity

.., rectified linear

A

Convolution stage:

Affine transform

i

|

Input to laver

Mention the stages and explain in detail,
1.Convolution Stage- usage of kernel or filters. (2M)
2.Detector Stage(2M)

3.Pooling Stage(2M)

4.Flattening and use of Softmax(2M)

10

CO4 | L3

Discuss the variants of the basic convolution function.

IAnswer:-

Convolution means an operation that consists of many applications of convolution
in parallel. This is because convolution with a single kernel can only extract one
kind of feature, albeit at many spatial locations.

Convolutional networks usually use multi-channel convolution, the linear
operations they are based on are not guaranteed to be commutative, even if kernel-
flipping is used

We may want to skip over some positions of the kernel in order to reduce the
computational cost (at the expense of not extracting our features as finely).

We can think of this as downsampling the output of the full convolution function.

If we want to sample only every s pixels in each direction in the output, we refer to

10

CO4 | L2

s as the stride of this downsampled convolution.

Zero padding the input allows us to control the kernel width and the size of the
output independently.

Three special cases of the zero-padding setting -

» One is the extreme case in which no zero-padding is used

whatsoever, and the convolution kernel is only allowed to visit

positions where the entire kernel is contained entirely within the

image. This is called valid convolution. In this case, all pixels in the

output are a function of the same number of pixels in the input.

However, the size of the output shrinks at each layer. If the input

image has width m and the kernel has width £, the output will be of

width m — k+ 1.

» Another special case of the zero-padding setting is when just enough|

zero-padding is added to keep the size of the output equal to the size]

of the input. This is called same convolution.

» Other extreme case, which is referred to as full convolution, in which|

enough zeroes are added for every pixel to be visited & times in each

direction, resulting in an output image of width m + &k — 1.

In some cases, we do not actually want to use convolution, but rather locally
connected layers.
This is sometimes also called unshared convolution, because it is a similar
operation to convolution with a small kernel, but without sharing parameter across
locations.

Tiled convolution offers a compromise between a convolutional layer and a locally
connected layer.
Rather than learning a separate set of weights at every spatial location, we learn a
set of kernels that we rotate through as we move through space.

This means that immediately neighboring locations will have different filters, like
in a locally connected layer, but the memory requirements for storing the parameters
will increase only by a factor of the size of this set of kernels, rather than the size of
the entire output feature map

3a

Explain the various datatypes used with CNN.
Answer :-

3 types

1D -1M

2D -2M

3D-2M on Single channel and Multichannel

w -ngh shannel

1D Audio waveform - We discretize time and measureSkeleton animation data — Animations of 3-D computer-

the amplitude of the waveform once per timerendered characters are generated by altering the

step. pose of a “skeleton” over time. At each point in time,
the pose of the character is described by a
specification of the angles of each of the joints in
the character’s skeleton.

Audio data that has been preprocessed with a FourierColor image data - One channel contains the red

2D transform - We can transform the audio waveform pixels, one the green pixels, and one the blue pixels.

into a 2D tensor with different rows

corresponding to different frequencies and

different columns corresponding to different

points in time.

3D Volumetric data - A common source of this kind ofColor video data - One axis corresponds to time, one
data is medical imaging technology, such as CTto the height of the video frame, and one to the
scans. width of the video frame.

CO4

L2

3b

Differentiate between Stride and Pooling in CNN.
Scheme:-
5 Differences each (5X1=5M)

Stride | Pooling

CO4

L2

Parameter used in Convolution Its an operation

Happens in Convolution layer Happens in Pooling Layer
Determines how convolution filter Aggregate max/avg
slides

Can reduce feature map size
Stride values can be 1, 2 etc.

Reduce feature map size
Max and AveragePooling

Explain Bidirectional RNN and Deep Recurrent Networks.
Answer:-

Bidirectional RNN with Diagram -5Marks

Figure 10.11: Clomputation of a typical bidirectional recurrent neural network. meant
to learn to map input sequences e Lo ta 't sequences 27, with loss L9 at each step £
The A recurrence p g

g recurrence propig
point 7, the output
input and from a relev

rcd in time (towards the right) while the
n time (towards the left). Thus at each

) ean benefit fre
ant summary of the future

relevant summary of the past in its 729
in its g input.

« However, in many applications we want to output a prediction of y® which
may depend on the whole input sequence. For example, in speech
recognition, because of the linguistic dependencies between nearby words:
if there are two interpretations of the current word that are both acoustically
plausible, we may have to look far into the future (and the past) to
disambiguate them.

* Bidirectional recurrent neural networks (or bidirectional RNNs) were
invented to address that need.

* They have been extremely successful in applications such as handwriting
recognition, speech recognition and bioinformatics.

* Bidirectional RNNs combine an RNN that moves forward through time
beginning from the start of the sequence with another RNN that moves
backward through time beginning from the end of the sequence.

Deep Recurrent Networks with Diagram -5Marks

The computation in most RNNs can be decomposed into three blocks of parameters
and associated transformations:

1. from the input to the hidden state,

2. from the previous hidden state to the next hidden state, and

3. from the hidden state to the output.

10

COs

L2

DRNN

3-layer RNN

&

time

Given a sequence where long-term dependencies are crucial, explain how each
LSTM gate (input gate, forget gate, and output gate) would operate on the sequence
during processing. Illustrate how gate activations change the cell state and hidden
state at each step, and analyze how modifying the gate values would affect the
model’s ability to retain or eliminate information.

Answer
* LSTMs also have this chain like structure, but the repeating module has a
different structure.
* Instead of having a single neural network layer, there are four, interacting in

a very special way.
v ¢

f I8
A [TAlL A

| |
&) © &)

Forget Gate with Diagram and equations 4M

The first step in our LSTM is to decide what information we’re going to throw
away from the cell state.

This decision is made by a sigmoid layer called the “forget gate layer.”

It looks at hi1 and x;, and outputs a number between 0 and 1 for each number in the
cell state Ci-1.

A 1 represents “completely keep this” while a 0 represents “completely get rid of
this.”

Let’s go back to our example of a language model trying to predict the next word
based on all the previous ones.

In such a problem, the cell state might include the gender of the present subject, so
that the correct pronouns can be used. When we see a new subject, we want to
forget the gender of the old subject

Ji = o (Wy-[h,—1,x.] + by)

Input Gate with Diagram and equations 3M

10

COs

L2

The next step is to decide what new information we're going to store in the cell state. This has
two parts. First, a sigmoid layer called the “input gate layer” decides which values we’ll update.
Next, a tanh layer creates a vector of new candidate values, C, that could be added to the state.

In the next step, we'll combine these two to create an update to the state.

In the example of our language model, we'd want to add the gender of the new subject to the

cell state, to replace the old one we're forgetting.

iy =0 (Wi-lhi—1,z] + bi)
ét :taﬂh(WC'[ht_l,IEt] -+ bc‘)

he_1

A

Output Gate with Diagram and equations 3M

It’s now time to update the old cell state, ;. into the new cell state C,

. The previous steps
already decided what to do, we just need to actually do it.

We multiply the old state by f,, forgetting the things we decided to forget earlier. Then we add
iy * C'¢. This is the new candidate values, scaled by how much we decided to update each state

value.

In the cs

= of the language model, this is where we’'d actually drop the information about the old

subject’s gender and add the new information., as we decided in the previous steps.

Ci Ct

®
v

Cr=fi*xCi_1+1i,%xCy

—®
o)

Explain how Recurrent Neural Network (RNN) processes the data sequence
using computational graphs.

Answer:-

Computational Graph 2M

Computational graph

[t is a way to formalize the structure of a set of computations.

» Many ways of formalizing computation as graphs are possible.

» Here, we use each node in the graph to indicate a variable. The variable
may be a scalar, vector, matrix, tensor, or even a variable of another
type.

» Ifavariable y is computed by applying an operation to a variable x, then
we draw a directed edge from x to y (x->y).

» We sometimes annotate the output node with the name of the operation

applied, and other times omit this label when the operation is clear from
context.

10

CO5

L2

Equations 3M
>Ex) s® = f(st1); 9)

= Unfolding equation
s® = F(s¢-1); g)
= f(f(s®2;0)
= FFU(s;0)

= FUFUC-F(sP;)

” ‘-\ " - ‘\‘
— gl) = e+ = = 50)]
Unfold A | £ £ oo~ !

For example, consider the classical form of a dynamical system:

s = f(s8lt—1). 9), (10.1)

where 8 is called the state of the system,
Equation 10,1 is recurrent because the definition of 8 at time ¢ refers back to

the same definition at time ¢ L

For a finite number of time steps 7, the graph can be unfolded by applying
the definition 7 I times. For example, if we unfold equation 10.1 for 7 3 time
steps, we obtain

8P =r(8'%;0) (10.2)
S(f(s8;0);0) (10.3)

Unfolding the equation by repeatedly applying the definition in this way has
vielded an expression that does not involve recurrence. Such an expression can
now be represented by a traditional directed acyclic computational graph. The
unfolded computational graph of equation 10,1 and equation 10.3 is illustrated in

figure 10.1.
g, Y Ll ™
ll alo) A —>l’ al)
_,’ J s S S Nl v

Figure 10.1: T'he classical dynamical system described by equation 1001, illustrated as an
unfolded computational graph. Each node represents the state at some time ¢ and the
function f maps the state at ¢ to the state at ¢+ 1. The smne parameters (the same value
of @ used to parametrize f) are used for all time steps.

S -

RNN process with explanation SM

Figure 10.3: The computational graph to compute the training loss of a recurrent network
that maps an input sequence of @ values to a corresponding sequence of output o values.
A loss L measures how far each o is from the corresponding training target . When using
softmax outputs, we assume o is the unnormalized log probabilities. The loss L internally
computes gy = softmax(o) and compares this to the target y. The RNN has input to hidden
connections parametrized by a weight matrix U, hidden-to-hidden recurrent connections
parametrized by a weight matrix W, and hidden-to-output connections parametrized by
a weight matrix V. Equation 10.8 defines forward propagation in this model. (Left)The
RNN and its loss drawn with recurrent connections. (Right)The same seen as an time-
unfolded computational graph, where cach node is now associated with one particular

_..
Unfold
w - -
’ N w w w ’ N
I pGe) = ol g0 0
\ / \
~_ - ~_ -

OO0
020302020
OO0

time instance.

1.

Recurrent networks that produce an output at each time step and have
recurrent connections between hidden units..

Recurrent networks that produce an output at each time step and have
recurrent connections only from the output at one time step to the
hidden units at the next time step.

Recurrent networks with recurrent connections between hidden
units, that read an entire sequence and then produce a single output.

Faculty Signature

CCI Signature

HOD Signature

