

USN

--	--	--	--	--	--	--	--

Internal Assessment Test 1 – September 2025

Sub:	Cryptography & Network Security				Sub Code:	BCS703	Branch:	CSE -AIML		
Date:	29/ 9 /25	Duration:	90 minutes	Max Marks:	50	Sem/Sec:	V	OBE		
<u>Answer any FIVE FULL Questions</u>								MARKS	CO	RBT
1	a	Explain the play fair cipher and encrypt the plaintext: SWARAJ IS MY BIRTH RIGHT by using the key “MONARCHY”. Use ‘X’ for blank spaces.						[10]	2	L3
2	a	Discuss the general description of DES encryption algorithm with the aid of diagram.						[10]	3	L2
3	a	Illustrate the RSA algorithm. Find the decryption key ‘d’ by using n=143 and encryption key e=11.						[10]	1	L3
4	a	What are the requirements for public key cryptosystems? Explain.						[10]	2	L2
5	a	Consider a Diffie-Hellman scheme with a common prime $p=11$ and primitive root $\alpha=2$ (Alpha) (i) Show that 2 is a primitive root of 11 (ii) If user ‘A’ has public key $Y_A=9$, What is A’s private key X_A ? (iii) If user ‘B’ has public key $Y_B=9$, What is the shared key K, share with A?						[10]	2	L3
6	a	Apply the Hill Cipher algorithm to encrypt the plaintext “PAYMOREMONEY” by using the key $K = \begin{matrix} 17 & 17 & 5 \\ 21 & 18 & 21 \\ 2 & 2 & 19 \end{matrix}$ show all the calculations.						[10]	3	L3

CI**CCI****HoD**

1 a Explain the play fair cipher and encrypt the plaintext: SWARAJ IS MY BIRTH RIGHT by using the key “MONARCHY”. Use ‘X’ for blank spaces.

Plaintext: SWARAJ IS MY BIRTH RIGHT

Key: MONARCHY

Rule: Use X for spaces.

Step 1: Construct the 5x5 Playfair matrix

- Key = MONARCHY (remove duplicates).
- Then fill remaining letters of alphabet (I/J considered same).

M O N A R

C H Y B D

E F G I/J K

L P Q S T

U V W X Z

Step 2: Prepare the plaintext

- Replace spaces with X:
SWARAJXISXMYXBIRTHXRIGHT
- Split into digraphs (pairs). If same letters in a pair, insert X between them.

SW AR AJ XI SX MY XB IR TH XR IG HT

Step 3: Apply Playfair encryption rules

Rules:

1. Same row → take right letter (wrap around if needed).
2. Same column → take letter below (wrap around if needed).
3. Otherwise → take rectangle rule (opposite corners).

Now encrypt each digraph:

1. **SW** → (S row4 col4, W row5 col3) → rectangle → QX
2. **AR** → (A row1 col4, R row1 col5) → same row → RM
3. **AJ** → (A row1 col4, J=I row3 col4) → same col → IS
4. **XI** → (X row5 col4, I row3 col4) → same col → AS
5. **SX** → (S row4 col4, X row5 col4) → same col → AU
6. **MY** → (M row1 col1, Y row2 col3) → rectangle → NC
7. **XB** → (X row5 col4, B row2 col4) → same col → AI
8. **IR** → (I row3 col4, R row1 col5) → rectangle → AK
9. **TH** → (T row4 col5, H row2 col2) → rectangle → PC
10. **XR** → (X row5 col4, R row1 col5) → rectangle → AM
11. **IG** → (I row3 col4, G row3 col3) → same row → FK
12. **HT** → (H row2 col2, T row4 col5) → rectangle → DS

Step 4: Final Ciphertext

Concatenate all:

QX RM IS AS AU NC AI AK PC AM FK DS

Or as one string:

QXRMISASAUNCIAKPCAMFKDS

Final Answer:

Using Playfair cipher with key **MONARCHY**, the ciphertext is:

QXRMISASAUNCAIAKPCAMFKDS

2 a Discuss the general description of DES encryption algorithm with the aid of diagram. [10] 3 L2

General Description of DES Encryption Algorithm

The **Data Encryption Standard (DES)** is a **block cipher** developed by IBM and adopted as a standard by NIST in 1977.

- **Block size:** 64 bits
- **Key size:** 64 bits (but only 56 bits are effective, 8 bits used for parity)
- **Rounds:** 16 rounds of encryption (Feistel structure)
- **Output:** 64-bit ciphertext

Working Steps of DES

1. **Initial Permutation (IP):**
 - The 64-bit plaintext is permuted according to a fixed table.
 - This shuffles the bits to prepare for processing.
2. **Division into Halves:**
 - After IP, the block is divided into two 32-bit halves: **Left (L0)** and **Right (R0)**.
3. **16 Feistel Rounds:**
 - Each round uses the Feistel structure:
 - Input: (L_{i-1}, R_{i-1})
 - Output:
 - $L_i = R_{i-1}$
 - $R_i = L_{i-1} \oplus f(R_{i-1}, K_i)$
 - Here f is the **round function** and K_i is the subkey for that round.
 - **Round Function $f(R, K)$:**
 - **Expansion (E-box):** Expand 32-bit R to 48 bits.
 - **XOR with Subkey:** Combine with 48-bit K_i .
 - **Substitution (S-box):** Divide into 8 groups of 6 bits \rightarrow compress into 4 bits each \rightarrow 32 bits.
 - **Permutation (P-box):** Rearranges 32-bit result.
 - Output is given to XOR with L .
4. **Final Permutation (FP):**
 - After 16 rounds, swap L_{16} and R_{16} .
 - Apply the **Inverse Initial Permutation (IP^{-1})** to get the 64-bit ciphertext.

Key Generation in DES

- Input key: 64 bits (only 56 used, 8 discarded as parity).

- Using permutation and shifts, generate **16 subkeys**, each of 48 bits, one for each round.

Diagram of DES (Textual form)

Plaintext (64 bits)

Initial Permutation (IP)

[]
| 16 Feistel Rounds |
| |
| Li = Ri-1 |
| Ri = Li-1 \oplus f(Ri-1, Ki) |
[]

Swap L16, R16

Final Permutation (IP⁻¹)

Ciphertext (64 bits)

3 a Illustrate the RSA algorithm. Find the decryption key 'd' by using n=143 and encryption key e=11.

RSA — brief illustration and calculation of ddd

1. Quick outline of RSA (steps)

1. Choose two distinct primes p and q .
2. Compute $n = p \cdot q$. n is the modulus.
3. Compute Euler's totient $\phi(n) = (p-1)(q-1)$.
4. Choose public exponent e such that $1 < e < \phi(n)$ and $\text{gcd}(e, \phi(n)) = 1$.

5. Find private exponent d satisfying $e \cdot d \equiv 1 \pmod{\phi(n)}$ (i.e. d is the modular inverse of e modulo $\phi(n)$).
6. Public key = (n, e) . Private key = d .
7. Encryption for message m (with $0 \leq m < n$): $c \equiv m^e \pmod{n}$
8. Decryption: $m \equiv c^d \pmod{n}$.

2. Given data

- $n=143$
- $e=11$

Factor n : $143 = 11 \times 13$. So choose $p=11$, $q=13$.

Compute $\phi(n) = (p-1)(q-1) = 10 \times 12 = 120$

We must find d such that

$$11 \cdot d \equiv 1 \pmod{120}.$$

3. Compute d (extended Euclidean steps)

We need the inverse of 11 modulo 120.

Do Euclid's algorithm:

- $120 = 11 \times 10 + 10$
- $11 = 10 \times 1 + 1$
- $10 = 1 \times 10 + 0$

Back-substitute to express 1 as combination of 11 and 120:

- $1 = 11 - 10 \times 1 = 11 - 10 \times (11 - 10 \times 1) = 11 - 10 \times 11 + 10 \times 10$
- but $10 = 120 - 11 \times 10$

So

$$1 = 11 - (120 - 11 \times 10) = 11 - 120 + 11 \times 10 = 11 \times 11 - 120 \times 1. \quad 1 = 11 - (120 - 11 \times 10) = 11 - 120 + 11 \times 10 = 11 \times 11 - 120 \times 1.$$

Thus $11 \times 11 \equiv 1 \pmod{120}$. Therefore

$$d \equiv 11 \pmod{120}.$$

We can take the smallest positive $d = 11$.

4. Verification

$$11 \cdot 11 \equiv 1 \pmod{120} \quad \checkmark$$

So the private (decryption) exponent is $d = 11$.

(Interesting observation: here $e=d$ — the public exponent equals the private exponent modulo $\phi(n)$.)

4 a What are the requirements for public key cryptosystems? Explain.

Requirements for Public Key Cryptosystems

A **public key cryptosystem** is an asymmetric system where each user has a **pair of keys**:

- **Public key** (known to everyone)
- **Private key** (kept secret)

For such a system to be secure and practically usable, the following requirements must be satisfied:

1. Computational Feasibility

- It must be **easy (efficient)** to generate a key pair (e,d)(e,d)(e,d) and to encrypt/decrypt a message using the respective keys.
- Example: RSA encryption and decryption are efficient with modular exponentiation.

2. One-way Function Property

- Given the public key e and ciphertext C , it should be computationally **infeasible** to determine the plaintext M without the private key d .
- Ensures security even if public key is widely distributed.

3. Trapdoor Function Property

- The system should be based on a **mathematical function** that is easy to compute in one direction but hard to invert **unless special secret information (trapdoor)** is known.
- Example: Multiplying two large primes is easy, but factoring their product (RSA modulus) is hard.

4. Key Pair Relationship

- A message encrypted with the **public key** can only be decrypted with the corresponding **private key**, and vice versa.
- This ensures both **confidentiality** (encryption) and **authentication** (digital signatures).

5. Resistance to Attacks

- It should be computationally infeasible to derive the **private key** from the **public key**.
- The system must withstand known cryptanalytic attacks (e.g., brute force, factoring, discrete logarithm).

6. Scalability

- Each participant should only need to keep a single key pair (public + private), while the public keys can be freely distributed.
- This removes the need for $n(n-1)/2$ secret keys as in symmetric cryptography.

5 a Consider a Diffie-Hellman scheme with a common prime $p=11$ and primitive root $\alpha=2$ (Alpha) (i) Show that 2 is a primitive root of 11 (ii) If user 'A' has public key $Y_A=9$, What is A's private key X_A ? (iii) If user 'B' has public key $Y_B=9$, What is the shared key K, share with A? [10] 2 L3

(i) Show 2 is a primitive root of 11

Compute powers of 2 modulo 11:

$$\begin{aligned} 2^1 &\equiv 2 \pmod{11} \\ 2^2 &\equiv 4 \pmod{11} \\ 2^3 &\equiv 8 \pmod{11} \\ 2^4 &\equiv 16 \equiv 5 \pmod{11} \\ 2^5 &\equiv 2^4 \cdot 2 \equiv 5 \cdot 2 = 10 \pmod{11} \\ 2^6 &\equiv 10 \cdot 2 = 20 \equiv 9 \pmod{11} \\ 2^7 &\equiv 9 \cdot 2 = 18 \equiv 7 \pmod{11} \\ 2^8 &\equiv 7 \cdot 2 = 14 \equiv 3 \pmod{11} \\ 2^9 &\equiv 3 \cdot 2 = 6 \pmod{11} \\ 2^{10} &\equiv 6 \cdot 2 = 12 \equiv 1 \pmod{11}. \end{aligned}$$

The powers $2^1, \dots, 2^{10}$ produce the residues $\{2, 4, 8, 5, 10, 9, 7, 3, 6, 1\}$ — i.e. all nonzero residues modulo 11. So the order of 2 modulo 11 is 10 (which equals $p - 1$), therefore 2 is a primitive root of 11.

(ii) Find A's private key X_A given public key $Y_A = 9$

Public key $Y_A \equiv \alpha^{X_A} \pmod{p}$. We need X_A with $2^{X_A} \equiv 9 \pmod{11}$.

From the table above $2^6 \equiv 9 \pmod{11}$. Thus $X_A = 6$ (smallest positive exponent giving 9).

(iii) If $Y_B = 9$, what is the shared key K between A and B?

Diffie-Hellman shared key $K \equiv Y_B^{X_A} \pmod{p}$. With $Y_B = 9$ and $X_A = 6$:

$$K \equiv 9^6 \pmod{11}.$$

Compute $9^2 \equiv 81 \equiv 4$, so $9^6 = (9^2)^3 \equiv 4^3 = 64 \equiv 64 - 5 \cdot 11 = 64 - 55 = 9 \pmod{11}$.

(Also note $2^{36} \equiv 2^{36 \bmod 10} = 2^6 \equiv 9$.)

So the shared key is $K = 9$.

Final answers

(i) 2 is a primitive root of 11.

(ii) $X_A = 6$.

(iii) Shared key $K = 9$.

6.a Apply the Hill Cipher algorithm to encrypt the plaintext "PAYMOREMONEY" by using the key K = 17 17 5 ,21 18 21 ,2 2 19 show all the calculations.

$$K = \begin{bmatrix} 17 & 17 & 5 \\ 21 & 18 & 21 \\ 2 & 2 & 19 \end{bmatrix}$$

and the plaintext is still "PAYMOREMONEY". Let's carefully redo the Hill Cipher encryption step by step.

Step 1: Convert plaintext to numbers

A=0, B=1, ..., Z=25

mathematica

P → 15
A → 0
Y → 24
M → 12
O → 14
R → 17
E → 4
M → 12
O → 14
N → 13
E → 4
Y → 24

Copy code

Numbers:

[15, 0, 24, 12, 14, 17, 4, 12, 14, 13, 4, 24]

Split into 3×1 blocks:

$$P_1 = \begin{bmatrix} 15 \\ 0 \\ 24 \end{bmatrix}, P_2 = \begin{bmatrix} 12 \\ 14 \\ 17 \end{bmatrix}, P_3 = \begin{bmatrix} 4 \\ 12 \\ 14 \end{bmatrix}, P_4 = \begin{bmatrix} 13 \\ 4 \\ 24 \end{bmatrix}$$

Step 2: Encrypt using Hill Cipher formula

$$C = K \cdot P \pmod{26}$$

$$\text{Block 1: } P_1 = \begin{bmatrix} 15 \\ 0 \\ 24 \end{bmatrix}$$

$$C_1 = \begin{bmatrix} 17 & 17 & 5 \\ 21 & 18 & 21 \\ 2 & 2 & 19 \end{bmatrix} \begin{bmatrix} 15 \\ 0 \\ 24 \end{bmatrix} \pmod{26}$$

Compute each element:

1. Row 1: $17 * 15 + 17 * 0 + 5 * 24 = 255 + 0 + 120 = 375 \pmod{26}$
 $26 * 14 = 364$, remainder $375 - 364 = 11 \rightarrow 11 \rightarrow L$
2. Row 2: $21 * 15 + 18 * 0 + 21 * 24 = 315 + 0 + 504 = 819 \pmod{26}$
 $26 * 31 = 806$, remainder $819 - 806 = 13 \rightarrow 13 \rightarrow N$
3. Row 3: $2 * 15 + 2 * 0 + 19 * 24 = 30 + 0 + 456 = 486 \pmod{26}$
 $26 * 18 = 468$, remainder $486 - 468 = 18 \rightarrow 18 \rightarrow S$

Block 1 ciphertext: LNS

$$\text{Block 2: } P_2 = \begin{bmatrix} 12 \\ 14 \\ 17 \end{bmatrix}$$

1. Row 1: $17 * 12 + 17 * 14 + 5 * 17 = 204 + 238 + 85 = 527$
 $26 * 20 = 520$, remainder 7 $\rightarrow 7 \rightarrow H$
2. Row 2: $21 * 12 + 18 * 14 + 21 * 17 = 252 + 252 + 357 = 861$
 $26 * 33 = 858$, remainder 3 $\rightarrow 3 \rightarrow D$
3. Row 3: $2 * 12 + 2 * 14 + 19 * 17 = 24 + 28 + 323 = 375$
 $26 * 14 = 364$, remainder 11 $\rightarrow 11 \rightarrow L$

Block 2 ciphertext: HDL

$$\text{Block 3: } P_3 = \begin{bmatrix} 4 \\ 12 \\ 14 \end{bmatrix}$$

1. Row 1: $17 * 4 + 17 * 12 + 5 * 14 = 68 + 204 + 70 = 342$
 $26 * 13 = 338$, remainder 4 $\rightarrow 4 \rightarrow E$
2. Row 2: $21 * 4 + 18 * 12 + 21 * 14 = 84 + 216 + 294 = 594$
 $26 * 22 = 572$, remainder 22 $\rightarrow 22 \rightarrow W$
3. Row 3: $2 * 4 + 2 * 12 + 19 * 14 = 8 + 24 + 266 = 298$
 $26 * 11 = 286$, remainder 12 $\rightarrow 12 \rightarrow M$

Block 3 ciphertext: EWM

$$\text{Block 4: } P_4 = \begin{bmatrix} 13 \\ 4 \\ 24 \end{bmatrix}$$

1. Row 1: $17 * 13 + 17 * 4 + 5 * 24 = 221 + 68 + 120 = 409$
 $26 * 15 = 390$, remainder 19 $\rightarrow 19 \rightarrow T$
2. Row 2: $21 * 13 + 18 * 4 + 21 * 24 = 273 + 72 + 504 = 849$
 $26 * 32 = 832$, remainder 17 $\rightarrow 17 \rightarrow R$
3. Row 3: $2 * 13 + 2 * 4 + 19 * 24 = 26 + 8 + 456 = 490$
 $26 * 18 = 468$, remainder 22 $\rightarrow 22 \rightarrow W$

Block 4 ciphertext: TRW

Step 3: Combine all blocks

Ciphertext = LNSHDLEWMTRW

Final Answer

Plaintext: PAYMOREMONEY

Ciphertext (Hill Cipher 3x3):