Internal Assessment Test II —January 2026

ANSWER KEY
Sub: Data Structures and Applications Sub BCS304 Branch: AIML/CSE
Code: AIML
Date: 8.1.26 Duration: | 90 min Max Marks: 50 Sem/Sec IITA,B,C OBE
. CO (RB
Answer any FIVE FULL Questions MARKS T
la Define Binary Search tree. Construct a binary search tree (BST) for the o6M CO4 L3

following elements: 100, 85, 45, 55, 120, 20, 70, 90, 115, 65, 130, 145.
Traverse using in-order, pre-order, and post-order traversal techniques.

BST definition and construction -3Marks

A Binary Search Tree (BST) is a binary tree in which:

e FEach node has at most two children.

e The left subtree of a node contains values less than the node’s key.

e The right subtree of a node contains values greater than the node’s

key
188
/ \
a5 128
I\ /A
45 98 115 138
/N \
28 55 145
\
7@
/
65

Traversal-3x1=3marks

In-order:

20, 45, 55, 65, 70, 85, 90, 100, 115, 120, 130, 145

Pre-order:

100, 85, 45,

Post-order:

20, 55,70, 65, 90, 120, 115, 130, 145

20, 65, 70, 55, 45, 90, 85, 115, 145, 130, 120, 100

1b

Construct a binary tree from the Inorder and Postorder sequence given
below In-order: GDHBAEICF
Post-order: GHDBIEFCA

Construction of Tree-4Marks

4M

CO4

L3

2a

Write C function for Depth First Search(DFS) and show the graph traversal by
taking an example.

DFS
Algorithm-3Marks

void DFS(int v)

{
int 1;
visited[v] = 1;

// Mark current

vertex as visited

printf("%d ", v);
// Visit the vertex

for(1=1;1<=n;1++)
{
if (adj[v][i] == 1 && visited[i] == 0)

{

DFS(i);
// Recursive call

}

M

CO4

L2

Example-3Marks

2b

Define graph. Explain Adjacency list and Adjacency matrix by taking an
example.

Graph-1Mark

A graph is a mathematical structure used to represent relationships between
objects.

e It consists of:
o Vertices (nodes): Represent objects.

o Edges (links): Represent connections or relationships between
the vertices.

e Notation: G =(V, E)
o V =set of vertices

o E =set of edges

Adjacency List-1 Mark

Adjacency List
e FEach vertex has a list of vertices it is connected to

Example -1Mark
Adjacency Matrix -1Mark
Adjacency Matrix

e A 2D array of size n x n where N = number of vertices

e Elementmatrix[i][j] = 1 ifthereis an edge from vertex i to
vertex J (0 otherwise)

Example -1Mark

M

CO4

L2

3a

Define hashing. Explain different hashing functions with examples.

Hashing-2Marks

Hashing function-

1)Division Method 2Marks
ii)MidsquareHash Functio n2 Marks
iii)Folding Method 2Marks

iv)Digit analysis-1Mark
v)Converting keys to integers-1Mark

10M

CO5

L2

Hashing — 2 Marks

Definition:
Hashing is a technique used to map keys to indices of a hash table using a
hash function to allow fast insertion, deletion, and searching.

Hashing Function — Methods

i) Division Method — 2 Marks

e Formula:

h(k)=kmod mh(k) = k \mod mh(k)=kmodm

e k =key, m = size of the hash table

e Example: Key = 123, Table size = 10 — 123mod 10=3123 \mod 10 =
3123mod10=3

e Pros: Simple and fast

e Cons: Table size should preferably be a prime number to reduce
collisions

ii) Mid-Square Method — 2 Marks

e Steps:
1. Square the key: k2k"2k2
2. Take the middle digits as the hash value

e Example: Key = 123 — 1232=15129123"2 = 151291232=15129 —
middle digits = 512 — index

e Pros: Good distribution

e Cons: Slightly more computation

iii) Folding Method — 2 Marks

e Steps:

1. Divide key into equal parts
2. Add the parts together
3. Apply modulo table size (optional)

e Example: Key = 123456, divide into 3 parts: 12, 34, 56 — 12+34+56 =
102 — index

e Pros: Handles large keys easily

iv) Digit Analysis — 1 Mark
e Use specific digits of the key as the hash value

e Example: Key = 45678 — use last 2 digits — 78 — index

v) Converting Keys to Integers — 1 Mark

e For alphanumeric keys, convert letters to numbers before hashing

e Example: Key ="ABC" — A=1, B=2, C=3 — 123 — use in hash
function

4a

What is a leftist tree? Give the C declaration of it .Explain how meld operation
is applied to two minimum leftist tree with the help of an example.

Leftist Tree

Definition (2 Marks):
A Leftist Tree is a type of priority queue implemented as a binary tree
where:

1. It satisfies the heap property: the key at each node is smaller
(min-leftist) or larger (max-leftist) than the keys of its children.

2. It satisfies the leftist property: the rank (distance to nearest null node,
also called null path length, npl) of the left child is always greater
than or equal to the rank of the right child.

The purpose of the leftist property is to keep the tree skewed to
the left, which ensures that merging (meld) operations are
efficient.

10M

COs5

L2

C Declaration (2 Marks)

typedef struct LeftistNode {
int key; //
int npl; //
struct LeftistNode *left; //
child
struct LeftistNode *right; //
child
} LeftistNode;

typedef LeftistNode* LeftistTree;
root of the tree

two children (null node).

Value of the node
Null Path Length
Pointer to left

Pointer to right

// Pointer to

e npl =null path length = shortest distance from node to a node without

Meld Operation (6 Marks)

Meld Operation:

heap and leftist properties.
Steps (for min-leftist tree):

the new root.

property (npl(left) = npl(right)).

4. Update the npl of the root.

The meld operation combines two leftist trees into one while maintaining

1. Compare the roots of both trees. Make the root with the smaller key

2. Recursively meld the right child of this root with the other tree.

3. Swap left and right children if necessary to maintain the leftist

S5a

Write C Functions for the following,

C function-2.5Marks

// Step 1: Allocate memory for the new node
Node* newNode = (Node*)malloc(sizeof(Node));
if ('InewNode) {

printf("Memory allocation failed\n");

}

// Step 2: Assign data to the new node

1) Inserting a node at the beginning of a Doubly linked list.

Node* insertAtBeginning(Node* head, int newData) {

return head; // return existing head if malloc fails

M

CO3

L2

newNode->data = newData;
newNode->prev = NULL; // New node becomes the first node
newNode->next = head; // Next points to the current head

// Step 3: Update previous head's prev pointer if list is not empty
if (head !=NULL) {
head->prev = newNode;

}

// Step 4: Return new node as the new head
return newNode;

ii)Deleting a node at the end of the Doubly linked list.

C function-2.5Marks
Node* deleteAtEnd(Node* head) {
// If the list is empty, nothing to delete
if (head == NULL) {
printf("List is empty.\n");
return NULL;
h

// If the list has only one node
if (head->next == NULL) {
free(head);
return NULL; // List becomes empty

}

// Traverse to the last node

Node* temp = head;

while (temp->next != NULL) {
temp = temp->next;

}

// ' Update previous node's next to NULL
temp->prev->next = NULL;

// Free the last node
free(temp);

// Return head of the list
return head;

5b

Write C functions for the following,
a)To search an item within a SLL(Singly Linked List)

C function-2 .5Marks
Node* searchSLL(Node* head, int key) {
Node* temp = head;

// Traverse the list
while (temp != NULL) {

M

CO3

L2

if (temp->data == key) {
return temp; // Item found, return pointer to the node

}

temp = temp->next;

}

// Ttem not found
return NULL;

}

b) To concatenate two SLL.

C function-2.5Marks
Node* concatenateSLL(Node* headl, Node* head2) {
//'Tf the first list is empty, return the second list
if (headl == NULL)
return head?2;

// Traverse to the end of the first list

Node* temp = headl;

while (temp->next != NULL) {
temp = temp->next;

}

// Link the last node of list1 to head of list2
temp->next = head2;

return headl; // Return the head of the concatenated list

}

6a

Write recursive C functions for inorder, preorder and postorder traversals
of a binary tree. Also, find all the traversals for the given tree.

=)
f“\'___h‘{_“

(B C

/%\
® ®®®
@ O

Each traversal -3 Marks
Preorder ABDEHICFG
INORDER: DBHEIAFCG
POSTODER:DHIEBFGCA

C function for each traversal -3Marks
/ Preorder traversal: Root -> Left -> Right
void preorder(Node* root) {
if (root == NULL) return;
printf("%c ", root->data);
preorder(root->left);
preorder(root->right);

// Inorder traversal: Left -> Root -> Right
void inorder(Node* root) {
if (root == NULL) return;
inorder(root->left);

6M

CO3

L3

printf("%c ", root->data);
inorder(root->right);

}

// Postorder traversal: Left -> Right -> Root
void postorder(Node* root) {
if (root == NULL) return;
postorder(root->left);
postorder(root->right);
printf("%c ", root->data);

6b

Define Binary tree. Explain the representation of a binary tree with a suitable
example.

Definition (2 Marks)
A binary tree is a hierarchical data structure in which each node has at most two

children, called left child and right child.

Array and Linked list representation of Binary tree-2Marks

-
(=]
[y]

ODE F GH|I|J
4 5 8 T B B 6B 11 12 13 14

4M

CO3

L2

	Adjacency List
	Adjacency Matrix
	Hashing – 2 Marks
	Hashing Function – Methods
	i) Division Method – 2 Marks
	ii) Mid-Square Method – 2 Marks
	iii) Folding Method – 2 Marks
	iv) Digit Analysis – 1 Mark
	v) Converting Keys to Integers – 1 Mark
	 Leftist Tree
	C Declaration (2 Marks)
	Meld Operation (6 Marks)
	Definition (2 Marks)

