

bsh | [[[[L [[[[|

Internal Assessment Test 2 — January 2026

Sub:

BCS306A

Object Oriented Programming with JAVA Sub Code: Branch:

AIML/CSE
AIML

Date:

/01/26 | Duration: | 90min | Max Marks: [50 | Sem/Sec: | I A,B & C

OBE

Answer any FIVE FULL Questions

MAR
KS

(60

RB
T

la

Explain method overriding and dynamic method dispatch with example.
1. Method Overriding(3 marks)
Method overriding occurs when a subclass provides a specific implementation of a method that
is already defined in its superclass.
IRules for Method Overriding:
e Method name and parameter list must be exactly the same.
e The method must be inherited from the superclass.
e Access level cannot be more restrictive than the superclass method.
e Opverriding happens only in runtime polymorphism.
2. Dynamic Method Dispatch(3 marks)
Dynamic method dispatch is the mechanism by which a call to an overridden method is resolved at
runtime, based on the object being referenced, not the reference type.

In Java, this is achieved using a superclass reference pointing to a subclass object.

6

CO3

L2

1b

Explain abstract classes and interfaces. Compare both.
1. Abstract Class (2 marks)
An abstract class is a class that cannot be instantiated and may contain abstract
methods (without body) as well as concrete methods (with body). It is used when
classes share common behavior and state.
Key Features
e Declared using the abstract keyword
o Can have abstract and non-abstract methods
Can contain instance variables
Can have constructors
Supports single inheritance (extends one class)
2. Interface (2 marks)
An interface is a collection of abstract methods and constants that represents a
contract. A class implementing an interface must provide implementations for all
its methods.
Key Features
o Declared using the interface keyword
e All methods are public and abstract by default
e Variables are public, static, and final
» No constructors
o Supports multiple inheritance

CO3

L3

2a

Explain multilevel inheritance with a Java program.

Multilevel Inheritance in Java(3 marks)

Multilevel inheritance is a type of inheritance where a class is derived from another class, which
itself is derived from another class.
In simple terms:
Class A — Class B — Class C

Here, Class C inherits the properties and methods of both Class A and Class B.

Example(3 marks)

CO3

L2

2b

Explain final keyword with respect to class, method, and variable.
1. final Variable(1)
A final variable is treated as a constant. Its value cannot be changed once assigned.
Key Points
e Must be initialized only once
e (Can be initialized at declaration, in constructor, or in initializer block
e Prevents reassignment
2. final Method(1.5)

A final method cannot be overridden by subclasses.

CO3

L3

It is used to prevent modification of method behavior in child classes.
Key Points

e Method implementation remains unchanged in subclasses

e Supports method overloading but not overriding

3. final Class(1.5)

A final class cannot be inherited.
It is used when a class should not be extended for security or design reasons.

Key Points

e Prevents inheritance
e All methods are implicitly final

3a

Explain exception handling in Java with suitable examples.

Exception Handling in Java(3 marks)

Exception handling in Java is a mechanism to handle runtime errors so that the normal flow of]
the program can be maintained.
IAn exception is an event that occurs during program execution and disrupts normal execution.

1. Types of Exceptions
a) Checked Exceptions
o Checked at compile time
e Must be handled using try-catch or throws
e Example: IOException, SQLException
b) Unchecked Exceptions
e Occur at runtime
e Subclasses of RuntimeException
e Example: ArithmeticException, NullPointerException

2. Exception Handling Keywords

Keyword Purpose

try Contains code that may cause an exception
catch Handles the exception

finally Executes whether exception occurs or not
throw Explicitly throws an exception

throws Declares exceptions in method signature
Example(2 marks)

CO4

L3

3b

Explain user-defined exceptions with a program.

User-Defined Exceptions in Java(3 marks)

A user-defined (custom) exception is an exception created by the programmer to handle
application-specific error conditions.

It is created by extending the Exception class (for checked exceptions) or RuntimeException
class (for unchecked exceptions).

Steps to Create a User-Defined Exception
1. Create a class that extends Exception or RuntimeException
2. Provide a constructor to pass the error message
3. Use throw to explicitly throw the exception
4. Handle it using try-catch
Example (2 marks)

CO4

L3

4a

Explain throw and throws keywords with examples.
1. throw Keyword(2.5 marks)
The throw keyword is used to explicitly throw a single exception from a method or block of
code.
Key Points
e Used inside a method or block
e (Can throw one exception at a time
e Used with exception objects
e Transfers control to the nearest catch block
2. throws Keyword(2.5 marks)
The throws keyword is used to declare exceptions that a method may pass to the calling method
instead of handling them.
Key Points
e Used in method signature
e Can declare multiple exceptions
e Mainly used for checked exceptions
e Responsibility of handling exception is passed to caller

CO4

L2

4b

Explain chained exceptions with example.

A chained exception is an exception that is caused by another exception.
Java provides this mechanism to preserve the original cause of an exception while throwing
a new one.

This helps in better debugging and error tracing.

'Why Chained Exceptions Are Needed
e To wrap a low-level exception with a higher-level exception
e To maintain the root cause of the error
e Common in layered applications (DAO — Service — Controller)

How Chaining Works in Java

Java supports chained exceptions using:

e Constructor that accepts a cause
e initCause() method

e getCause() method

CO4

L2

S5a

What is thread? Explain the two ways to creating a thread in java with an example.

A thread is the smallest wunit of execution within a program.
In Java, a thread represents a separate path of execution, allowing multiple tasks to run
concurrently within a single program.

Java supports multithreading, which improves:

e Program responsiveness

e CPU utilization

e Performance in concurrent applications

Two Ways to Create a Thread in Java
Java provides two main approaches to create a thread:
1. By Extending the Thread Class
Steps
1. Create a class that extends Thread
2. Override the run() method
3. Create an object of the class
4. Call the start() method
2. By Implementing the Runnable Interface
Steps
1. Create a class that implements Runnable
2. Override the run() method
3. Pass the object to a Thread class constructor
4. Call the start() method

COs

L3

5b

Explain Thread Synchronization with suitable example.

Thread Synchronization in Java

Thread synchronization is a mechanism used to control access to shared resources in a
multithreaded environment.
It ensures that only one thread at a time can access a critical section of code, thereby
preventing data inconsistency and race conditions.

'Why Synchronization Is Needed

'When multiple threads access a shared object simultaneously:
e Data may become inconsistent

e QOutput may be unpredictable

e Race conditions can occur

Types of Synchronization in Java

1. Synchronized Method

2. Synchronized Block

3. Static Synchronization (class-level lock)

COs

L3

6a

Explain Enumerations in Java including: values(), valueOf()
Enumerations (Enums) in Java
An Enumeration (enum) in Java is a special data type used to define a fixed set of named

constants.

COs

L3

Enums improve type safety, readability, and maintainability compared to using constants like int
or String.

Defining an Enum
enum Day {
MONDAY, TUESDAY, WEDNESDAY, THURSDAY, FRIDAY, SATURDAY, SUNDAY
}
e Day is an enum
e Each identifier is a constant object of type Day

values() Method
The values() method returns an array of all enum constants in the order they are declared.
Example
class ValuesExample {
public static void main(String[] args) {
for (Day d : Day.values()) {
System.out.println(d);

H
H
H
valueOf() Method
The valueOf() method returns the enum constant corresponding to the specified string name.
Example
class ValueOfExample {
public static void main(String[] args) {
Day d = Day.valueOf("FRIDAY");
System.out.println(d);
H
i

6b

Explain Wrapper Classes and Autoboxing with examples.
1. Wrapper Classes
'Wrapper classes in Java provide a way to convert primitive data types into objects.
This is required because Java collections and many APIs work only with objects, not primitives.
class WrapperDemo {
public static void main(String[] args) {
inta=10; // primitive
Integer obj = Integer.valueOf(a); // wrapping

System.out.println(obj);
H

i
2. Autoboxing

Autoboxing is the automatic conversion of a primitive type into its corresponding wrapper
object by the Java compiler.
class AutoboxingDemo {
public static void main(String[] args) {
int a = 20;
Integer obj = a; // autoboxing

System.out.println(obj);

}

}

COs5

L3

