T O O R R

~§\% CMRIT

¥
CMR INSTITUTE OF TECHNOLOGY, BENGALUR.
ACCREDITED WITH A+ GRADE BY NAAC

EBry,,

cl

Internal Assessment Test 2 — November 2025

Sub: [Software Engineering and Project Management Sub Code: | BCS501 |Branch: | AIML/CSE-AIML
Date: | 02/12/2025 |Duration: | 90 mins | Max Marks: | 50 | Sem/Sec: V - A/B/IC OBE
Answer any FIVE FULL Questions MARKS| CO |RBT
la |Analyze the software engineering principles that guide any one framework activity. 5 |CO3| L4

1b |Differentiate the components of SMART objectives and examine how each element 5 |CO5| L4
influences the success of a project plan.

Explain the importance of project management in software development. 10 |CO3| L2

Describe the major activities in software project management. 10 |CO4| L2

Apply the phases of the project management life cycle to a suitable project scenario. | 10 |CO3| L3

Apply function point—based decomposition to estimate the size of a software system.| 10 |CO5| L3

o O B~ WD

Explain the components of the COCOMO Il model. 10 |CO4| L2

Internal Assessment Test 2 — November 2025

Sub: Software Engineering and Project Management
Sub Code: BCS501 Branch: AIML/CSE-AIML
Date: 02/12/2025 Duration: 90 mins Max Marks: 50 Sem/Sec: V - A/B/C

Answer any FIVE FULL Questions

la Analyze the software engineering principles that guide any one
framework activity.

Design Modeling Principles

Principle 1. Design should be traceable to the requirements model.

The requirements model describes the information domain of the problem, user-visible functions, system
behavior, and a set of requirements classes that package business objects with the methods that service
them. The design model translates this information into an architecture, a set of subsystems that
implement major functions, and a set of components that are the realization of requirements classes.The
elements of the design model should be traceable to the requirements model.

Principle 2. Always consider the architecture of the system to be built.

Software architecture is the skeleton of the system to be built. It affects interfaces, data structures,
program control flow and behavior, the manner in which testing can be conducted, the maintainability of
the resultant system, and much more. For all of these reasons, design should start with architectural
considerations. Only after the architecture has been established should component-level issues be
considered.

Principle 3. Design of data is as important as design of processing functions.

Data design is an essential element of architectural design. The manner in which data objects are
realized within the design cannot be left to chance. A well- structured data design helps to simplify
program flow, makes the design and implementation of software components easier, and makes overall
processing more efficient.

Principle 4. Interfaces (both internal and external) must be designed with care.

The manner in which data flows between the components of a system has much to do with processing
efficiency, error propagation, and design simplicity. A well- designed interface makes integration easier
and assists the tester in validating component functions.

Principle 5. User interface design should be tuned to the needs of the end user.

However, in every case, it should stress ease of use. The user interface is the visible manifestation of the
software. No matter how sophisticated its internal functions, no matter how comprehensive its data
structures, no matter how well designed its architecture, a poor interface design often leads to the
perception that the software is “bad.”

Principle 6. Component-level design should be functionally independent.

Functional independence is a measure of the “single-mindedness” of a software component. The
functionality that is delivered by a component should be cohesive—that is, it should focus on one and
only one function or subfunction.

Principle 7. Components should be loosely coupled to one another and to the external
environment.

Coupling is achieved in many ways— via a component interface, by messaging, through global data. As
the level of coupling increases, the likelihood of error propagation also increases and the overall
maintainability of the software decreases. Therefore,component coupling should be kept as low as is
reasonable.

Principle 8. Design representations (models) should be easily understandable.

The purpose of design is to communicate information to practitioners who will generate code, to those
who will test the software, and to others who may maintain the software in the future. If the design is
difficult to understand, it will not serve as an effective communication medium.

Principle 9. The design should be developed iteratively

. With each iteration, the designer should strive for greater simplicity. Like almost all creative activities,
design occurs iteratively. The first iterations work to refine the design and
correct errors,

1 b. Differentiate the components of SMART objectives and examine how each element
influences the success of a project plan.

ANS. The mnemonic SMART is sometimes used to describe well defined objectives:

Specific: Effective objectives are concrete and well defined. Vague aspirations such as ‘to improve
customer relations’ are unsatisfactory. Objectives should be defined in such a way that it is obvious to all
whether the project has been successful or not.

Measurable: Ideally there should be measures of effectiveness which tell us how successful the project
has been. For example, ‘to reduce customer complaints’ would be more satisfactory as an objective than
‘to improve customer relations’. The measure can, in some cases, be an answer to simple yes/no
questions, e.g. ‘Can we install the new software by 1 November 20117’

Achievable: It must be within the power of the individual or group to achieve the objective.
Relevant: The objective must be relevant to the true purpose of the project.

Time constrained: There should be a defined point in time by which the objective should have been
achieved.

2 Explain the importance of project management in software development.

ANS. Importance of Project Management in Software Development

1. Ensures Clear Goals and Direction
Project management helps define the project’s scope, objectives, and requirements. This
prevents misunderstandings and keeps the entire team aligned on what needs to be built.

2. Improves Planning and Organization
It provides a structured approach for scheduling tasks, allocating resources, estimating timelines,
and identifying dependencies. This reduces chaos and increases efficiency.

3. Manages Risks Effectively
Every software project faces risks—technical failures, delays, budget overruns, changing
requirements. Project management identifies, analyzes, and mitigates these risks before they
become major issues.

4. Enhances Communication and Collaboration
It establishes communication channels among developers, testers, stakeholders, and managers.
Clear communication ensures transparency, quicker issue resolution, and smoother teamwork.

5. Controls Budget and Time
Project management monitors progress against plans, ensuring that the project stays within

budget and deadlines. It also enables early detection of deviations so corrective actions can be
taken.

6. Ensures Quality Deliverables
Through planning, reviews, testing strategies, and continuous monitoring, project management
ensures that the final software meets quality standards and user expectations.

7. Facilitates Change Management
Requirements often change. Project management provides processes to handle changes without
derailing the entire project, ensuring adaptability and control.

8. Supports Continuous Improvement
After project completion, project managers conduct evaluations to identify lessons learned. This
help

3. Describe the major activities in software project management.
ANS The Feasibility Study:

This is an investigation into whether a prospective project is worth starting that it has

a valid business case. Information is gathered about the requirements of the proposed
application. The probable developmental and operational costs, along with the value of the
benefits of the new system, are estimated. The study could be part of a strategic planning
exercise examining and prioritizing a range of potential software developments.

Planning:

If the feasibility study produces results which indicate that the prospective project

appears viable, planning of the project can take place. However, for a large project, we would
not do all our detailed planning right at the beginning. We would formulate an outline plan

for the whole project and a detailed one for the first stage. More detailed planning of the

later stages would be done asthey approached. Thisis because we would havemore detailed
and accurate information upon which to base our plans nearer to the start of the later stages.

Project Execution:

The project can now be executed. The execution of a project often contains design
and implementation subphases. The same is illustrated in Figure 1.2 which shows the
typical sequence of software development activities recommended in the international
standard ISO 12207.

Requirements Analysis:

This starts with requirement elicitation or requirement gathering which establishes
what the users require of the system that the project is to implement. Some work along
these lines will almost certainly have been carried out when the project was evaluated,
but now the original information obtained needs to be updated and supplemented.

S E
r

Mystar

Software

I | Friata) lntion | ‘. ,‘ -—

[Accepiance suppon]2 2

] I Figure 1.2: Sub Phases in Project Execution Snecificat

Detailed documentation of what the proposed system is to do.

Design:

A design has to be drawn up which meets the specification. This design will be in two
stages. One will be the external or user design concerned with the external appearance
of the application. The other produces the physical design which tackles the way that
the data and software procedures are to be structured internally.

Architecture Design: This maps the requirements to the components of the system
that is to be built. At the system level, decisions will need to be made about which
processes in the new system will be carried out by the user and which can be
computerized. This design of the system architecture thus forms an input to the
development of the software requirements. A second architecture design process
then takes place which maps the software requirements to software components.
Detailed Design: Each software component is made up of a humber ofsoftware units
that can be separately coded and tested. The detailed design of these units is carried
out separately.

Coding:

This may refer to writing code in a procedural language or an object-oriented

language or could refer to the use of an application-builder. Even where software is not
being built from scratch, some modification to the base package could be required to
Meet the needs of the new application.

Testing (Verification and Validation):

Whether software is developed specially for the current application or not, careful
testing will be needed to check that the proposed system meets its requirements.
Integration: The individual components are collected together and tested to see if they
meet the overall requirements. Integration could be at the level of software where
Different software components are combined, or at the level of the system as a whole
where the software and other components of the system such as the hardware
platforms and networks and the user procedures are brought together.

Qualification Testing: The system, including the software components, has to be tested
carefully to ensure that all the requirements have been fulfilled.

Implementation/Installation:

Some system development practitioners refer to the whole of the project after

design as ‘implementation’ (that is, the implementation of the design) while others insist
that the term refers to the installation of the system after the software has been
developed.

Acceptance Support:

Once the system has been implemented there is a continuing need for the correction

of any errors that may have crept into the system and for extensions and improvements
to the system. Maintenance and support activities may be seen as a series of minor
software projects.

|

Feasibility study \
¥ v How do we

w
.l/xil worth

()o i!
Project execution |
e
Figure 1.1: The Feasibility Study / Plan / Execution Cycle

4 Apply the phases of the project management life cycle to a suitable project scenario.

ANS

1. Project Initiation: The project initiation phase starts with project concept
development. During concept development the different characteristics of the
software to be developed are thoroughly understood,which includes,the scopeofthe
project,the project constraints, the cost that would be incurred and the benefits that
would accrue. Based on this understanding, a feasibility study is undertaken to
determine the project would be financially and technically feasible.
Based on feasibility study, the business case is developed. Once the top management
agrees to the business case, the project manager is appointed, the project charter is
written and finally project team is formed. This sets the ground for the manager to
start the project planning phase.
WS5HHPrinciple: Barry Boehm,summarized the questionsthat need to be asked and answered
in order to have an understanding of these project characteristics.
Why is the software being built?
What will be done?
When will it be done?
Who is responsible for a function?

Where are they organizationally located?
How will the job be done technically and managerially?

How much of these each resource is needed.

2. Project Bidding: Once the top management is convinced by the business case, the
project charter is developed. For some categories of projects, it may be necessary to

have formal bidding process to select suitable vendor based on some cost-
performance criteria. The different types of bidding techniques are:

Request for quotation(RFQ) : An organization advertises an RFQ if it has
good understanding of the project and the possible solutions.

Request for Proposal(RFP) : An organization had reasonable understanding
of the problem to be solved, however, it does not have good grasp of the
solution aspects. i.e. may not have sufficient knowledge about different
features to be implemented. The purpose of RFP is to get an understanding
of the alternative solutions possible that can be deployed and not vendor
selection. Based on the RFP process, the requesting organization can form a
clear idea of the project solutions required, based on which it can form a
statement work (SOW) for requesting RFQ for the vendors.

Request for Information (RFI): An organization soliciting bids may publish

an RFI. Based on the vendor response to the RFI, the organization can assess
the competencies of the vendors and shortlist the vendors who can bid for
the work.

3. Project Planning:

An importance of the project initiation phase is the project charter.

During the project planning the project manger carries out several processes and
creates the following documents:

Project plan: This document identifiesthe project the project tasks and a
schedule for the project tasks that assigns project resources and time

frames to the tasks.

Resource Plan: It lists the resources , manpower and equipment that

would be required to execute the project.

Functional Plan: It documentsthe plan for manpower, equipment and other costs.
Quiality Plan: Plan of quality targets and control plans are

included in this document.

Risk Plan: This document lists the identification of the potential risks, their
prioritization and a plan for the actions that would be taken to contain the
different risks.

4. Project Execution: In this phase the tasks are executed as per the project plan
developed during the planning phase. Quality of the deliverables is ensured through
execution of proper processes. Once all the deliverables are produced and accepted
by the customer, the project execution phase completes and the project closure
phase starts.

5. Project Closure: Project closure involves completing the release of all the required
deliverables to the customer along with the necessary documentation. All the Project
resources are released and supply agreements with the vendors are terminated and

¢ Prigdt nrapment ot)
P\ T\
2% i b
. - Sovan toicprunt iy e

|ﬂﬂk\|m | Pum OCOSSE

process -I——{_.. B

Emm—o{mm} Project
e process

process closing

o= Project indiation —s+e——— Project axacution —————»te-Projoct closing-»

L 3

Fioue 1.5 Principol project manogement processes

5 Apply function point-based decomposition to estimate the size of a software system.

ANS Function Point—Based Decomposition

1. Identify the System’s Functional Components
Break the system into the five standard function types:

e External Inputs (El) — data entering the system

e External Outputs (EO) — data leaving the system

e External Inquiries (EQ) — data retrieval without update

e Internal Logical Files (ILF) — data groups maintained within the system

e External Interface Files (EIF) — data used by the system but maintained externally

This step ensures you understand what the system does from the user's perspective.

2. Determine the Complexity of Each Function
For each identified function:
e Evaluate its data element types (DETs) and file types referenced (FTRS).

e Assign a complexity level: Low, Average, or High.

These complexity levels correspond to standard weights defined in Function Point Analysis.
3. Calculate the Unadjusted Function Points (UFP)
e Multiply the number of functions in each category by their assighed weights.

e Sum the results across all categories.

This produces the Unadjusted Function Point (UFP) total, representing the system’s logical size.
4. Apply the Value Adjustment Factor (VAF)

Evaluate 14 general system characteristics (such as performance, reusability, security, maintainability).
Each characteristic is rated from 0 to 5 based on its influence on the system.

Compute the VAF using:

VAF = 0.65 + (0.01 x ZFi)
where Fi are the ratings of the 14 factors.

5. Compute the Adjusted Function Points (AFP)
Calculate the final estimate:
Adjusted Function Points = UFP x VAF

This produces the final function point size of the system.

6 Explain the components of the COCOMO Il model.

ANS

Components of the COCOMO Il Model

COCOMO Il (Constructive Cost Model Il) is a software cost-estimation model used to predict the
effort, time, and cost required to develop software. It consists of several key components:

1. Application Composition Model
Used in early prototyping stages.

e Based on Object Points (screens, reports, 3GL components).
e Estimates effort using Ul requirements, prototypes, and high-level features.
e Useful when the system is still evolving and size is uncertain.

2. Early Design Model

Used when the basic architecture is defined.

e Uses Unadjusted Function Points (UFP) or Lines of Code (LOC) as size measures.
e Applies seven cost drivers (e.g., reliability, complexity, platform difficulty).
e Provides rough effort estimates early in the design process.

3. Post-Architecture Model

Used when full system architecture and detailed requirements are known.

e The most detailed and commonly used level of COCOMO II.
e Incorporates:

o Scale Factors (5 factors) — determine the exponent in the effort equation and
reflect project “economies or diseconomies of scale.”

m Precedentedness
m Development flexibility
m Architecture/risk resolution
m Team cohesion
m Process maturity
o Effort Multipliers (17 cost drivers) — adjust effort based on product, platform,

personnel, and project attributes.
Examples:

m Product complexity
m Required reliability
m Personnel capability

m Platform volatility

4. Effort Estimation Formula

COCOMO Il uses the general equation:

Effort = A x (Size)*E x MNM(EM)
Where:

e A = calibration constant
e Size = estimated size in KSLOC or function points
e E = exponent derived from scale factors

e EM; = effort multipliers from cost drivers

	1. Application Composition Model
	2. Early Design Model
	3. Post-Architecture Model
	4. Effort Estimation Formula

