1(a)

[llustrate how the architecture of electronic mail (email) operates in a real-world communication scenario.

ELECTRONIC MAIL

Electronic mail (or e-mail) allows users to exchange messages. In applications like HTTP or FTP, the server
constantly awaits client requests to provide a response, whereas in email, messages are sent and stored
until the recipient retrieves them. when Alice sends an email to Bob, a response is optional and, if given, is
a separate transaction. Unlike typical client-server setups, Bob doesn't run a server to receive emails, as he
might be offline. Instead, intermediate servers handle the client-server functions, allowing users to connect
only when they wish to check or send messages.

Architecture

To explain the architecture of email, we present a typical scenario, as illustrated in Figure. An alternative
scenario occurs when Alice or Bob is directly connected to their respective mail server, eliminating the need
for a LAN or WAN connection; however, this variation does not affect the overall discussion.

UA
MTA MAA
= g ro l:]
D client BN UA: user agent 0 client
e\ MTA: me transfer agent ,,;)
_ N MAA: me ssage access agent e 2>

Alice

TR
Wor Way =

]

e
= HIES
0

10 e

"
client —j'\ lmcmaf

Spool

Mail server Mail server

In the common scenario, the sender and the receiver of the e-mail, Alice and Bob respectively, are
connected via a LAN or a WAN to two mail servers. The administrator has created one mailbox for each
user where the received messages are stored. A mailbox is part of a server hard drive, a special file with
permission restrictions. Only the owner of the mailbox has access to it. The administrator has also created a
gueue (spool) to store messages waiting to be sent.

A simple e-mail from Alice to Bob takes nine different steps, as shown in the figure. Alice and Bob use
three different agents: a user agent (UA), a message transfer agent (MTA), and a message access agent
(MAA).

1. Alice composes an email using her User Agent (UA).

2. The UA sends the message to the Message Transfer Agent (MTA) client on Alice’s mail server.
3. The MTA client forwards the message to the MTA server on the same mail server.

4. The email is placed in a spool (queue) on Alice’s mail server, awaiting transfer.

5. The MTA client sends the email across the Internet to Bob’s mail server.

6. The MTA server on Bob’s mail server receives the email.

7. The email is stored in Bob’s mailbox on his mail server.

8. Bob’s Message Access Agent (MAA) server retrieves the message from the mailbox.

9. Bob uses his MAA client to access the message through his User Agent (UA).

There are two important points we need to emphasize here.

1. Bob cannot directly use the MTA server to receive messages, as this would require him to run the MTA
server continuously, keeping his computer and network connection on all the time—an impractical setup,
especially with a WAN connection.

2. Unlike the MTA client-server, which "pushes" messages to the server, Bob requires "pull" programs to
retrieve messages. This is why he needs Message Access Agent (MAA) programs, allowing him to pull
messages from the server when needed.

User Agent

The first component of an electronic mail system is the user agent (UA). A user agent is a software package
(program) that composes, reads, replies to, and forwards messages. It also handles local mailboxes on the

user computers. There are two types of user agents: command-driven and GUI-based. A command-driven
user agent normally accepts a one-character command from the keyboard to perform its task. For example,
a user can type the character r, at the command prompt, to reply to the sender of the message, or type the
character R to reply to the sender and all recipients. Some examples of command driven user agents are
mail, pine, and elm. Modern user agents are GUI-based. They contain graphical user interface (GUI)
components that allow the user to interact with the software by using both the keyboard and the mouse.
Some examples of GUI-based user agents are Eudora and Outlook.

Sending Mail

To send mail, the user, through the UA, creates mail that looks very similar to postal mail. It has an
envelope and a message. The envelope usually contains the sender address, the receiver address, and
other information. The message contains the header and the body. The header of the message defines the
sender, the receiver, the subject of the message, and some other information. The body of the message
contains the actual information to be read by the recipient.

Receiving Mail

The user agent is triggered by the user (or a timer). If a user has mail, the UA informs the user with a
notice. If the user is ready to read the mail, a list is displayed in which each line contains a summary of the
information about a particular message in the mailbox. The summary usually includes the sender mail
address, the subject, and the time the mail was sent or received. The user can select any of the messages
and display its contents on the screen.

Addresses

To deliver mail, a mail handling system must use an addressing system with unique addresses. In the
Internet, the address consists of two parts: a local part and a domain name, separated by an @ sign.
The local part of an email address specifies the user's mailbox, while the domain part identifies the mail
server or exchanger for sending and receiving mail.

Mailing List or Group List

Electronic mail allows one name, an alias, to represent several different e-mail addresses; this is called a
mailing list. Every time a message is to be sent, the system checks the recipient’s name against the alias
database; if there is a mailing list for the defined alias, separate messages, one for each entry in the list,
must be prepared and handed to the MTA.

Message Transfer Agent: SMTP

An e-mail is an application that needs three uses of client-server paradigms to accomplish its task. It is
important that we distinguish these three when we are dealing with e-mail. Figure shows these three
client-server applications. We refer to the first and the second as Message Transfer Agents (MTAs), the third
as Message Access Agent (MAA).

The formal protocol that defines the MTA client and server in the Internet is called Simple Mail Transfer
Protocol (SMTP).

2(a)

Explain MOSPF with an example and suitable diagram.

Current
router

—

Gl

S
i m3
—

"
m2

5 2
Gl G1,G2 G2,G3 Gl Gl

a. An internet with some active groups b. S-G1 shortest-path tree

Current Current
outer router Forwarding table
for current router
m2

7
m2 Group-Source |Interface

e S.Gl m2
@—»6/' Gt |
1 G1

c. S-G1 subtree seen by current router d. S-GI pruned subtree

Multicast Link State (MOSPF)

Path First (OSPF) protocol, which is used in unicast routing. It also uses the source-based tree approach to
multicasting. If the internet is running a unicast link-state routing algorithm, the idea can be extended to
provide a multicast link-state routing algorithm.

To extend unicasting to multicasting, each router needs to have another database, as with the case of
unicast distance-vector routing, to show which interface has an active member in a particular group. Now a
router goes through the following steps to forward a multicast packet received from source S and to be sent
to destination G (a group of recipients):

1. Create Shortest-Path Tree Using Dijkstra Algorithm

The router uses the Dijkstra algorithm to create a shortest-path tree with S as the root and all destinations
in the internet as the leaves. Note that this shortest-path tree is different from the one the router normally
uses for unicast forwarding, in which the root of the tree is the router itself.

In this case, the root of the tree is the source of the packet defined in the source address of the packet. The
router is capable of creating this tree because it has the LSDB, the whole topology of the internet; the
Dijkstra algorithm can be used to create a tree with any root, no matter which router is using it. The point
we need to remember is that the shortest-path tree created this way depends on the specific source. For
each source we need to create a different tree.

2. Locate the Router in the Shortest-Path Tree

The router finds itself in the shortest-path tree created in the first step. In other words, the router creates a
shortest-path subtree with itself as the root of the subtree.

3. Prune the Broadcast Subtree into a Multicast Tree

The shortest-path subtree is actually a broadcast subtree with the router as the root and all networks as
the leaves. The router now uses a strategy similar to the one we describe in the case of DVMRP to prune
the broadcast tree and to change it to a multicast tree. The IGMP protocol is used to find the information at
the leaf level. MOSPF has added a new type of link state update packet that floods the membership to all
routers. The router can use the information it receives in this way and prune the broadcast tree to make
the multicast tree.

4. Forward the Multicast Packet Through Required Interfaces

The router can now forward the received packet out of only those interfaces that correspond to the
branches of the multicast tree. We need to make certain that a copy of the multicast packet reaches all
networks that have active members of the group and that it does not reach those networks that do not.
Figure shows an example of using the steps to change a graph to a multicast tree. For simplicity, we have
not shown the network, but we added the groups to each router. The figure shows how a source-based
tree is made with the source as the root and changed to a multicast subtree with the root at the current
router.

3(a)
Develop algorithm of Distance Vector Routing and explain the same.

The Distance-Vector (DV) Routing Algorithm

= The distance vector (DV) algorithm is iterative, asynchronous, and distributed.
=> |t is iterative that the process continues on until no more information is exchanged between neighbours.
=> The algorithm is asynchronous in that it does not require all of the nodes to operate in lockstep with
each other.
= Let dx(y) be the cost of the least-cost path from node x to node y. Then the least costs are related by the
celebrated Bellman-Ford equation, namely,
dx(y) = minv { c(x,v) + dv(y) }
=> With the DV algorithm, each node x maintains the following routing information:

o For each neighbour v, the cost c(x,v) from x to directly attached neighbour, v

o Node x’s distance vector, that is, Dx = [Dx(y): y in N], containing x’s estimate of its cost to all
destinations, y, in N

o The distance vectors of each of its neighbours, that is, Dv = [Dv(y): y in N] for each neighbour v of x

1 Initialization:

2 for all destinations y in N:

3 D,(Y) = c(X,¥) /* if y is not a neighbor then c(x,y) = o */
4 for each neighbor w

5 D.(y) = ? for all destinations y in N

6 for each neighbor w

7 send distance vector D, = [D,(y): y in N] to w

8

9 loop

10 wait (until I see a link cost change to some neighbor w or

11 until I receive a distance vector from some neighbor w)
12

13 for each y in N:

14 D,(y) = min {c(x,v) + D,(y)}

15

16 if D (y) changed for any destination y

17 send distance vector D, _ = [D (y): y in N] to all neighbors
18

19 forever

Figure illustrates the operation of the DV algorithm for the simple three node network shown at the top of
the figure.

Node x table

cost to

iy =

X 0o 2 3
y 2 0 1
z 3 10
cost to

[iExciy

X 0253
y 2 0 1
z 3 1 0
cost to

[ExTy =

x 0 2 3
y 2 01
z 355 G0
Time

- Distance-vector (DV) algorithm

4(a)

Construct a detailed diagram of TCP and UDP headers and show how each field contributes to packet
delivery in client-server communication.

The transport layer is situated between the application layer and the network layer, providing process-to-
process communication between application layers at the local and remote hosts. The delivery of
messages to the correct process (rather than just the destination computer, which is the network layer's
responsibility) is handled by transport-layer protocols like TCP and UDP, using port numbers.

In client-server communication, a combination of an IP address and a port number, called a socket address,
is required at both ends to define the client and server processes uniquely and make a connection. The
transport layer handles encapsulation (adding a header on the sender's side) and decapsulation (removing
the header and delivering the message on the receiver's side).

Below are detailed descriptions of the UDP and TCP headers and how their fields contribute to this delivery
mechanism.

8 bytes

~—] Header

a. UDP uscrdatagram

0 16 31

Source port number Destination port number I
Total length Checksum I

b. Header format

32-bit source IP address

32-bit destination IP address

Pseudoheader

All 0s ‘ 8-bit protocol 16-bit UDP total length

Source port address Destination port address
16 bits 16 bits

UDP total length Checksum
16 bits 16 bits

Header

Data

(Padding must be added to make
the data a multiple of 16 bits)

User Datagram Protocol (UDP) Header

UDP is a connectionless, unreliable transport protocol that uses a minimum of overhead. Its packets,
known as user datagrams, have a fixed-size header of 8 bytes, consisting of four 16-bit fields.

| 20to 60 bytes |
I I
q Header Data
a. Segment
1 16 31
Source port address Destination port address
16 bits 16 bits
Sequence number
32 bits
Acknowledgment number
32 bits
HLEN alElsIgls Window size
4 bits KIHITININ 16 bits
Urgent pointer
16 bits 16 bits

Options and padding

(up to 40 bytes)

Transmission Control Protocol (TCP) Header

TCP is a reliable connection-oriented protocol. TCP packets, called segments, use a combination of
sequence numbers, acknowledgments, and control flags to manage reliability, flow, and connection state.
The TCP header length is variable, ranging from a minimum of 20 bytes (if no options are present) up to 60
bytes (if options are included)

5(a)

Explain SSH and its components with neat diagram.

Application

SSH-CONN |

SSH SSH-AUTH |

rrr

SECURE SHELL (SSH)

Although Secure Shell (SSH) is a secure application program that can be used today for several purposes
such as remote logging and file transfer, it was originally designed to replace TELNET. There are two

versions of SSH: SSH-1 and SSH-2, which are totally incompatible. The first version, SSH-1, is now
deprecated because of security flaws in it.

Components

SSH is an application-layer protocol with three components.

SSH Transport-Layer Protocol (SSH-TRANS)

Since TCP is not a secure transport-layer protocol, SSH uses an additional protocol called SSH-TRANS to
create a secure channel on top of TCP. The process begins with the client and server establishing an
insecure connection via TCP. They then exchange security parameters to establish a secure channel using
SSH-TRANS.

The services provided by this protocol:
1. Privacy or confidentiality of the message exchanged

2. Data integrity, which means that it is guaranteed that the messages exchanged between the client
and server are not changed by an intruder.

3. Server authentication, which means that the client is now sure that the server is the one that it
claims to be

4. Compression of the messages, which improves the efficiency of the system and makes attack more
difficult.

SSH Authentication Protocol (SSH-AUTH)

After establishing a secure channel and authenticating the server, SSH proceeds to authenticate the client.
The client sends a request to the server with the username, server name, authentication method, and
required data. The server then responds with either a success message, confirming authentication, or a
failure message, prompting the client to try again with a new request. This process is similar to client
authentication in SSL.

SSH Connection Protocol (SSH-CONN)

Once the secure channel is established and both the server and client are authenticated, SSH uses the SSH-
CONN protocol. One of its key features is multiplexing, which allows the client to create multiple logical
channels over the secure channel. Each channel can be used for different purposes, such as remote logging
or file transfer.

5(b)

Explain the structure and purpose of HTTP request and response message formats.

Legend (sp: Space cr: Carriage Return If: Line Feed)

Request | method | [sp] | URL | [sp] | Version Version | [sp] [285 | 5p) [Phrase /g
Header name . Value Header name . Value

Header Header
fines | &*¢ eoo lines

Header name . Value Header name . Value

Blank Blank
Variable number of lines Variable number of lines
Body (Present only in some messages) (Present only in some messages) Body

Request message Response message

Message Formats

The HTTP protocol defines the format of the request and response messages.

Request Message
Method:

There are five HTTP methods:

> GET: The GET method is used when the browser requests an object, with the requested object identified
in the URL field.

> POST: With a POST message, the user is still requesting a Web page from the server, but the specific
contents of the Web page depend on what the user entered into the form fields. If the value of the method
field is POST, then the entity body contains what the user entered into the form fields.

> PUT: The PUT method is also used by applications that need to upload objects to Web servers.
> HEAD: Used to retrieve header information. It is used for debugging purpose.

> DELETE: The DELETE method allows a user, or an application, to delete an object on a Web server.
URL:

Specifies URL of the requested object

Version:

This field represents HTTP version, usually HTTP/1.1

Header line:

Ex:
Host: www.someschool.edu

Connection: close

http://www.someschool.edu/

User-agent: Mozilla/5.0
Accept-language: fr

The header line Host:www.someschool.edu specifies the host on which the object resides.

By including the Connection:close header line, the browser is telling the server that it doesn’t want to
bother with persistent connections; it wants the server to close the connection after sending the requested
object.

The User-agent: header line specifies the user agent, that is, the browser type that is making the request to
the server. Here the user agent is Mozilla/5.0, a Firefox browser.

The Accept-language: header indicates that the user prefers to receive a French version of the object, if
such an object exists on the server; otherwise, the server should send its default version.

Response Message
Example

HTTP/1.1 200 OK

Connection: close

Date: Tue, 09 Aug 2011 15:44:04 GMT

Server: Apache/2.2.3 (CentQS)
Content-Length: 6821

Last-Modified: Tue, 09 Aug 2011 15:11:03 GMT
Content-Type: text/html

(data data data data data ...)

Status Line

The status line has three fields: the protocol version field, a status code, and a corresponding status

message.

Version is HTTP/1.1
The status code and associated phrase indicate the result of the request. Some common status codes and
associated phrases include:

1. 200 OK: Request succeeded and the information is returned in the response.

2. 301 Moved Permanently: Requested object has been permanently moved; the new URL is specified
in Location: header of the response message. The client software will automatically retrieve the new
URL.

3. 400 Bad Request: This is a generic error code indicating that the request could not be understood
by the server.

4. 404 Not Found: The requested document does not exist on this server.

5. 505 HTTP Version Not Supported: The requested HTTP protocol version is not supported by the

server.

Header fields:

> The server uses the Connection: close header line to tell the client that it is going to close the TCP
connection after sending the message.

> The Date: header line indicates the time and date when the HTTP response was created and sent by the
server.

> The Server: header line indicates that the message was generated by an Apache Web server; it is
analogous to the User-agent: header line in the HTTP request message.

> The Last-Modified: header line indicates the time and date when the object was created or last
modified.

> The Content-Length: header line indicates the number of bytes in the object being sent.

> The Content-Type: header line indicates that the object in the entity body is HTML text.

6(a)
Briefly explain Recursive Resolution & Iterative Resolution in DNS.

Recursive Resolution In a recursive DNS resolution, an application on a host (e.g., some.anet.com) needs
the IP address of another host (e.g., engineering.mcgraw-hill.com) to send a message. The source host’s
DNS resolver (client) queries its local DNS server (dns.anet.com), which doesn’t have the address and
forwards the request to a root DNS server. The root server, lacking the specific mapping, knows the relevant
top-level domain server (e.g., for .com) and forwards the query there. This server, not having the exact
address, directs the query to McGraw-Hill’s local DNS server (dns.mcgraw-hill.com), which finally provides
the destination IP. This IP address is sent back step-by-step—from McGraw-Hill’s DNS server to the top-level
DNS server, then to the root server, the ISP’s DNS server (which caches it), and ultimately back to the

source host.

Root

server Source: some.anet.com
N, Destination: engineering. mcgraw-hill.com
Anet ISP “ McGraw-Hill Network
Local Top-level Local

° <

omain server server Destination

Source server \\
A o P "
@ =1 = N

dns.anet.com .com Server dns.mcgraw-hill.com

Iterative Resolution In iterative resolution, each server that does not know the mapping sends the IP
address of the next server back to the one that requested it. Figure shows the flow of information in an
iterative resolution. Normally the iterative resolution takes place between two local servers; the original
resolver gets the final answer from the local server. Note that the messages shown by events 2, 4, and 6
contain the same query. However, the message shown by event 3 contains the IP address of the top-level
domain server, the message shown by event 5 contains the IP address of the McGraw-Hill local DNS server,
and the message shown by event 7 contains the IP address of the destination. When the Anet local DNS
server receives the IP address of the destination, it sends it to the resolver (event 8).

Root

server Source: some.anet.com
e Destination: engineering. mcgraw-hill.com
Anet ISP u McGraw-Hill Network
Local Top-level Local
Resolver server domain server server Destination
dns.anet.com com Server dns.mcgraw-hill.com

1 7

6(b)

Explain three-way handshaking of TCP connection establishment.

Client
process

Client transport Server transport Server
layer A: ACK flag F: FIN flag layer g

Y

Active close

demcccc -

i Connection 4-'-)'.7_.-...-.-... :

: closed : ' Passive close ;

 REEEEE TR ' ' |

E : E Connection |

‘ " : closed :

. : P R AT S »
Time Time Time Time

Three-Way Handshaking

The connection establishment in TCP is called three-way handshaking. For example, an application
program, called the client, wants to make a connection with another application program, called the server,
using TCP as the transport-layer protocol.

The process starts with the server. The server program tells its TCP that it is ready to accept a connection.
This request is called a passive open. Although the server TCP is ready to accept a connection from any
machine in the world, it cannot make the connection itself.

The client program issues a request for an active open. A client that wishes to connect to an open server
tells its TCP to connect to a particular server. TCP can now start the three-way handshaking process, as
shown in Figure.

The three steps in this phase are as follows:

1. Client - SYN
The client sends the first segment, a SYN segment, in which only the SYN flag is set. This segment is
for synchronization of sequence numbers. This sequence number is called the initial sequence
number (ISN). This segment does not contain an acknowledgment number. The SYN segment is a
control segment and carries no data.

2. Server - SYN + ACK
The server sends the second segment, a SYN + ACK segment with two flag bits set as: SYN and ACK.
This segment has a dual purpose.

o Itisa SYN segment for communication in the other direction.

o It acknowledges the receipt of the SYN segment from the client by setting the ACK flag and
displaying the next sequence number it expects to receive from the client.
Because the segment contains an acknowledgment, it also needs to define the receive.

3. Client - ACK
The client sends the third segment. This is just an ACK segment. It acknowledges the receipt of the
second segment with the ACK flag and acknowledgment number field.

