USN []]]						CMRIT CMRIT CMRIT CAR HESTIVIL OF TECHNOLOGY, BINGRAPHU ACCRECITED WHITH AS CHANGE MY MARKET					
	·,		I	nternal Asses	smen	t Test -	- III			· · · · · · · · · · · · · · · · · · ·	
Sub:	Engineering Mathematics - III					Sub	Code:	17MAT31 Branch		CS	
Date:		Duration:	90 min's	Max Marks:	50	i	n/Sec:	III CS-B,	OBE		
	Question 1 is		2.6.4.2.	any SIX que	stion	from (Question	2 to 9	MARKS	СО	RBT
1.	State and prove Euler's theorem.								[80]	CO3	1,3
2.	Test for an extremum of the functional $I = \int_0^1 (xy + y^2 - 2y^2y')dx$, $y(0) = 1$, $y(1) = 2$								[07]	CO3	13
	Use Simpson's rule to evaluate $\int_{1}^{7} \frac{dx}{x}$ and hence find $\log_{e} 7$.								[07]	CO6	L3
4.	The velocity v of a particle at distance s from a point on its path is given by the table below. Estimate the time taken to travel 60 metres using Weddle's rule.								[07]	CO6	L3
	S metres 0 10 20 30 40 50 60										
]	V m/sec	47	58	64 65		61	52	38			

USN							CMRIT CARRISTIVITE OF TECHNOLOGY, RINGLIUM, ACCESSEDATED WITH AS GRAPPEN VIAGA-					
				ternal Asse	ssme	nt Test -	· III					
Sub:	: Engineering Mathematics - III				Sub	Code:	17MAT31 Branch		CS			
Date:	19.11.2018	Duration:	90 min's	Max Marks:	50	Sem	ı / Sec:	III CS-B,C	II CS-B,C			
Question 1 is compulsory. Answer SIX questions from Question 2 to 9									MARKS	CO	RBT	
1.	1. State and prove Euler's theore m.									CO3	ĭ. L.3	
2.	Test for an extremum of the functional $I = \int_{0}^{1} (xy + y^2 - 2y^2y^1) dx$, $y(0) = 1$, $y(1) = 2$									CO3	L3	
	Use Simpson's rule to evaluate $\int_{1}^{7} \frac{dx}{x}$ and hence find $\log_{e} 7$.								[07]	CO6	1.3	
4.	The velocity v of a particle at distance s from a point on its path is given by the table below. Estimate the time taken to travel 60 metres using Weddle's rule.								[07]	CO6	L3	
	S metres	0	10		0	40	50	60				
	V m/sec	47	58	64 6	5	61	52	38				

A nec conder for I = Jfccyy')da Eules egn where y(sci)=9, and y(scs)=92 to be an externum is that 3f - de (3f)=0 Eulero con Proof Let I be an extremum along Some curve y = ycx) passeng thou Some curve of g(x, y)P(xi yi) and g(x, y)Let $y = y(x) + h \times (x)$ Let $y = y(x) + h \times (x)$ so that dead - out Political when h=0 the 2 curves coincide making I an extremum. (i.e) $I = \int_{C}^{C} f\left(\infty, y(x) + hx(x)\right) dx$ is an extremum when h=0. Thus seen dI = 0 when h=0,

thereading I as a first

the nec condr for I to be an extremum.

SI=0 orep the nec condn for to de con exteremen.

Geodesics

Given 2 out pts pand 9 and surface S there exist injurte no. of curves heaving p and 9 as their whose extremities. of these the curve whose length is the least is called as the geodesic bet the bts Pland 9 on the given surface. A geodesic on a Surface is a curve which the distance bet the 2 pts of the surface is

P.T the S.D bet 2 pts on a plane along st line journing them PT geodesics on a plane are st lines

Geodesies on a plane are st lines We can also S.T this is the st line journing the ble P(xx y,) Q(xx y) y (x) = 4, y (x) = 42 $y_1 = c_1 \times c_2 + c_2$ $y_2 = c_1 \times c_2 + c_2$ $\frac{y_2 - y_1}{x_2 - x_1} = c_1$ y-y, = c, (>c-x) $y - y_1 = \frac{y_2 - y_1}{x_{12} - x_2}$ (20-24) xiz-xi can of line Pq Hanging cable (chain), frablem A heavy cable harge freely under granty bet > fixed pts. S. The Shape of the cable is a caterary

2.
$$I = \int (xy+y^2-2y^2y') dx$$
 $y(x)=1$ $y(1)=2$
 $f = xxy+y^2-2y^2y'$
 $f = xy+y^2-2y^2y'$
 $f = xy+y^2-2y^2$
 $f = xy+y^$

 $h = \frac{1}{6}$ 7 ordinates N = 6 $3c_0 = 1$ $3c_0 = 1$ $3c_0 = 5$ $3c_0 = 6$ $3c_0 = 5$ $3c_0 = 6$ $3c_0 = 6$

Fract value of
$$\int \frac{dx}{x} = (\log x)^{-1}$$
 [1]

$$= \log^{-1} - (2)$$

$$= \log^{-1} - (2)$$

$$= \log^{-1} - (2)$$

$$= \int_{0}^{\infty} \frac{dx}{x} = \log^{-1} - (2) \log^{-1} - (2)$$

$$= \int_{0}^{\infty} \frac{dx}{x} = \log^{-1} - (2) \log^{-1} - (2) \log^{-1} - (2)$$

$$= \int_{0}^{\infty} \frac{dx}{x} = \log^{-1} - (2) \log^{-1} - (2) \log^{-1} - (2)$$

$$= \int_{0}^{\infty} \frac{dx}{x} = \log^{-1} - (2) \log^{-1} - (2) \log^{-1} - (2)$$

$$= \int_{0}^{\infty} \frac{dx}{x} = \log^{-1} - (2) \log^{-$$

PHS N=-My=1-(-1)=2
$$\sqrt{x}$$

$$\int \int 2 dx dy = 2 \int \int dy dx$$

$$= 2 \int (y) \sqrt{x} dx$$

$$= 2 \int (3x - x^2) dx$$

 $\int_{0}^{1} (x-y) dx + (x+y) dy$ $\int_{0}^{1} (x-y) dx + (x+x^{2}) 2x dx$ $\int_{0}^{1} (x-x^{2}) dx + (x+x^{2}) 2x dx$ $\int_{0}^{1} (x-x^{2}+2x^{2}+2x^{3}) dx$ $\int_{0}^{1} (x-x^{2}+2x^{2}+2x^{3}) dx$ $\int_{0}^{1} (x-x^{2}+2x^{3}+2x^{3}) dx$

3640 0.4 0.04 409, 0 0,04 4592 0.6 f(x) = 36 + (3c - 15) 0.4 $\frac{1}{3c=2b} (x-15) (x-25) (0.04) + 0$ $\frac{1}{f(x)} = 36 + (26 - 15)(0.4) +$ (26-15) (26-25) (0.04) 36+11(0.4) +(1)(1)(0.04) 36 + 4: 4 + 0. 4 h × 40.84