USN					

Internal Assessment Test 2 – Oct. 2018

Sub:	APPLIED GEOTI	ECHNICAI	L ENGINEER	ING		Sub Code:	15CV53	Branch:	CV		
Date:	17/10/18 Duration: 90 min's Max Marks: 50 Sem / Sec: V (A&									OF	BE
			Answer A	LL Questions				M	ARKS	CO	RBT
1 (a)	1 (a) Define earth pressure at rest with a neat sketch.									CO3	L2
(b)	(b) Compare between Coulomb's and Rankine's theories.									CO3	L2
(c) A retaining wall 9m high retains a cohesionless backfill with e= 0.6, Φ =33° and G =2.68. The surface is level with the top of the wall. The water table is at a depth of 3m from ground level. Obtain pressure distribution diagram and determine the total active pressure and its point of application. Take $\gamma_w = 10 \text{ kN/m}^3$.							epth	[09]	CO3	L3	
2 (a)	a) Explain the Swedish Circle method of stability analysis for a $C-\Phi$ soil.								[07]	CO3	L2
(b)	(b) Explain the Fellinious method of locating the center of critical slip circle.							[06]	CO3	L2	
(c) A 6 m deep canal is to be excavated through a soil with $C=15$ kN/m², $\Phi=20$ °, $e=0.65$ & $G=2.6$. The side slope is 1:1. If $S_n=0.06$, determine the FOS wrt cohesion when the canal runs full. What will be the FOS if the canal is rapidly emptied? Take Taylor's stability no: for this condition as 0.114.						ion	[04]	CO3	L3		

USN					

Internal Assessment Test 2 – Sept. 2018

Sub:	APPLIED GEOTECHNICAL ENGINEERING					Sub Code:	15CV53	Branch:	CV		
Date:	17/10/18	Duration:	90 min's	Max Marks:	50	Sem / Sec:	V (.	OF	3E		
Answer ALL Questions								M	ARKS	СО	RBT
1 (a) Define earth pressure at rest with a neat sketch.									[03]	CO3	L2
(b) Compare between Coulomb's and Rankine's theories.									[04]	CO3	L2
(c) A retaining wall 9m high retains a cohesionless backfill with e= 0.6, Φ =33° and G =2.68. The surface is level with the top of the wall. The water table is at a depth of 3m from ground level. Obtain pressure distribution diagram and determine the total active pressure and its point of application. Take $\gamma_w = 10 \text{ kN/m}^3$.							epth	[09]	CO3	L3	
2 (a)	2 (a) Explain the Swedish Circle method of stability analysis for a C-Φ soil.								[07]	CO3	L2
(b) Explain the Fellinious method of locating the center of critical slip circle.							[06]	CO3	L2		
(c) A 6 m deep canal is to be excavated through a soil with $C=15$ kN/m², $\Phi=20$ °, $e=0.65$ & $G=2.6$. The side slope is 1:1. If $S_n=0.06$, determine the FOS wrt cohesion when the canal runs full. What will be the FOS if the canal is rapidly emptied? Take Taylor's stability no: for this condition as 0.114.						ion	[04]	CO3	L3		

3 (a)	Explain with a neat sketch, Culmann's construction for active pressure.	[08]	CO3	L2
(b)	Explain briefly the types of slope failure.	[06]	CO3	L2
(c)	A homogeneous slope 15 m high is made of $c - \phi$ soil with unit weight of $18kN/m^3$, unit cohesion of 50 kPa and angle of internal friction of 25°. Compute the factor of safety with respect to cohesion and the critical height of slope. Assume $S_n = 0.05$.	[03]	CO3	L3

CI CCI HOD

3 (a) Explain with a neat sketch, Culmann's construction for active pressure.	[08]	CO3	L2
(b) Explain briefly the types of slope failure.	[06]	CO3	L2
(c) A homogeneous slope 15 m high is made of $c-\phi$ soil with unit weight of 18kN/m unit cohesion of 50 kPa and angle of internal friction of 25°. Compute the factor of safety with respect to cohesion and the critical height of slope. Assume $S_n = 0.05$.		CO3	L3

CI CCI HOD