
	
	USN
	
	
	
	
	
	
	
	
	
	

	[image:]

	Internal Assessment Test 1 – September 2018

	Sub:
	Advanced JAVA and J2EE
	Sub Code:
	15CS553
	Branch:
	CSE

	Date:
	10/09/2018
	Duration:
	90 min’s
	Max Marks:
	50
	Sem / Sec:
	5th A,B,C
	OBE

	Answer any FIVE FULL Questions
	MARKS
	CO
	RBT

	1
	What is string in Java? Write a java program that demonstrates any four constructors of string class.
	[10]
	CO3
	L1

	2 (a)
	Write a program to remove duplicate characters in a given string and display new string without any duplicates.
	[06]
	CO3
	L3

	 (b)
	Write a Java program to change the case of characters within the string.
	[04]
	CO3
	L3

	3
	 Explain the following methods with syntax and suitable example,
 i). equals() and equalsIgnoreCase() ii). regionMatches()
 iii). startsWith() and endsWith() iv). equals() versus = =
 v). compareTo() vi). indexOf() vii). lastIndexOf()
	[10]
	CO3
	L2

	4
	Explain the four types of JDBC drivers. Explain the working of JDBC.
	[8+2]
	CO5
	L1

		USN
	
	
	
	
	
	
	
	
	
	

	[image:]

	Internal Assessment Test 1 – September 2018

	Sub:
	Advanced JAVA and J2EE
	Sub Code:
	15CS553
	Branch:
	CSE

	Date:
	10/09/2018
	Duration:
	90 min’s
	Max Marks:
	50
	Sem / Sec:
	5th A,B,C
	OBE

	Answer any FIVE FULL Questions
	MARKS
	CO
	RBT

	1
	What is string in Java? Write a java program that demonstrates any four constructors of string class.
	[10]
	CO3
	L1

	2 (a)
	Write a program to remove duplicate characters in a given string and display new string without any duplicates.
	[06]
	CO3
	L3

	 (b)
	Write a Java program to change the case of characters within the string.
	[04]
	CO3
	L3

	3
	Explain the following methods with syntax and suitable example,
 i). equals() and equalsIgnoreCase() ii). regionMatches()
 iii). startsWith() and endsWith() iv). equals() versus = =
 v). compareTo() vi). indexOf() vii). lastIndexOf()
	[10]
	CO3
	L2

	4
	Explain the four types of JDBC drivers. Explain the working of JDBC.
	[8+2]
	CO5
	L1

	5
	List all statement objects and explain any two with example in JDBC.

	[10]
	CO5
	L2

	6
	Explain the steps required to establish a database connection using JDBC with code (write sample database schema).

	[10]
	CO5
	L3

	7 (a)
	With proper syntax, explain three types of getConnection() method with example.

	[06]
	CO5
	L3

	 (b)
	Explain Connection Pool and TimeOut.
	[04]
	CO5
	L3

--

	5
	List all statement objects and explain any two with example in JDBC.

	[10]
	CO5
	L2

	6
	Explain the steps required to establish a database connection using JDBC with code (write sample database schema).

	[10]
	CO5
	L3

	7 (a)
	With proper syntax, explain three types of getConnection() method with example.

	[06]
	CO5
	L3

	 (b)
	Explain Connection Pool and TimeOut.
	[04]
	CO5
	L3

SCHEME

	Question #
	Description
	Marks Distribution
	Max Marks

	1
	string in Java
four constructors of string class.
	
2M
2M each

	
10M
	
10M

	2 a
	a program to remove duplicate characters in a given string and display new string without any duplicates.
	
6M
	
6M
	
6M

	2 b
	program to change the case of characters within the string.
	
4M
	
4M
	
4M

	3
	
Each method syntax and example
	10 X
1M each
1M
	
10M
	
10M

	4
	
four types of JDBC drivers
and working of JDBC.
	
2.5M each
	
10M
	
10M

	5
	List all statement objects
Explain any two with example in JDBC.
	
2M
4M each
	
10M
	
10M

	6
	
steps required to establish a database connection using JDBC with
code
	
5 M

5 M
	
10M
	
10M

	7a
	three types of getConnection() method with example.
	2M
2M
2M

	6M
	6M

	7b
	Connection Pool
 TimeOut.
	
2M
2M
	
4M
	
4M

SOLUTION:

1. What is string in Java? Write a java program that demonstrates any four
constructors of string class.
String is a sequence of characters. In java, objects of String are immutable which means a constant and cannot be changed once created.
Creating a String
There are two ways to create string in Java:
· String literal
String s = “GeeksforGeeks”;
· Using new keyword
String s = new String (“GeeksforGeeks”);
Constructors
String(byte[] byte_arr) – Construct a new String by decoding the byte array. It uses the platform’s default character set for decoding.
Example:

byte[] b_arr = {71, 101, 101, 107, 115};
String s_byte =new String(b_arr); //Geeks
String(byte[] byte_arr, Charset char_set) – Construct a new String by decoding the byte array. It uses the char_set for decoding.
Example:
byte[] b_arr = {71, 101, 101, 107, 115};
Charset cs = Charset.defaultCharset();
String s_byte_char = new String(b_arr, cs); //Geeks
String(byte[] byte_arr, String char_set_name) – Construct a new String by decoding the byte array. It uses the char_set_name for decoding.
It looks similar to the above constructs and they before similar functions but it takes the String(which contains char_set_name) as parameter while the above constructor takes CharSet.
Example:
byte[] b_arr = {71, 101, 101, 107, 115};
String s = new String(b_arr, "US-ASCII"); //Geeks
String(byte[] byte_arr, int start_index, int length) – Construct a new string from the bytes arraydepending on the start_index(Starting location) and length(number of characters from starting location).
Example:
byte[] b_arr = {71, 101, 101, 107, 115};
String s = new String(b_arr, 1, 3); // eek
String(byte[] byte_arr, int start_index, int length, Charset char_set) – Construct a new string from the bytes array depending on the start_index(Starting location) and length(number of characters from starting location).Uses char_set for decoding.
Example:
byte[] b_arr = {71, 101, 101, 107, 115};
Charset cs = Charset.defaultCharset();
String s = new String(b_arr, 1, 3, cs); // eek
String(byte[] byte_arr, int start_index, int length, String char_set_name) – Construct a new string from the bytes array depending on the start_index(Starting location) and length(number of characters from starting location).Uses char_set_name for decoding.
Example:
byte[] b_arr = {71, 101, 101, 107, 115};
String s = new String(b_arr, 1, 4, "US-ASCII"); // eeks
String(char[] char_arr) – Allocates a new String from the given Character array
Example:
char char_arr[] = {'G', 'e', 'e', 'k', 's'};
String s = new String(char_arr); //Geeks
String(char[] char_array, int start_index, int count) – Allocates a String from a given character array but choose count characters from the start_index.
Example:
char char_arr[] = {'G', 'e', 'e', 'k', 's'};
String s = new String(char_arr , 1, 3); //eek
String(int[] uni_code_points, int offset, int count) – Allocates a String from a uni_code_array but choose count characters from the start_index.
Example:
int[] uni_code = {71, 101, 101, 107, 115};
String s = new String(uni_code, 1, 3); //eek
String(StringBuffer s_buffer) – Allocates a new string from the string in s_buffer
Example:
String s_buffer = "Geeks";
String s = new String(s_buffer); //Geeks
String(StringBuilder s_builder) – Allocates a new string from the string in s_builder
Example:
String s_builder = "Geeks";
String s = new String(s_builder);

2a>. Write a program to remove duplicate characters in a given string and display new
string without any duplicates.
public class test {

 public static void main(String[] args) {

 String input = new String("abbc");
 String output = new String();

 for (int i = 0; i < input.length(); i++) {
 for (int j = 0; j < output.length(); j++) {
 if (input.charAt(i) != output.charAt(j)) {
 output = output + input.charAt(i);
 }
 }
 }

 System.out.println(output);

 }

}
b> Write a Java program to change the case of characters within the string.
// Java program to Convert characters
// of a string to opposite case
class Test{

 // Method to convert characters
 // of a string to opposite case
 static void convertOpposite(StringBuffer str)
 {
 int ln = str.length();

 // Conversion using predefined methods
 for (int i=0; i<ln; i++)
 {
 Character c = str.charAt(i);
 if (Character.isLowerCase(c))
 str.replace(i, i+1, Character.toUpperCase(c)+"");
 else
 str.replace(i, i+1, Character.toLowerCase(c)+"");

 }
 }

 public static void main(String[] args)
 {
 StringBuffer str = new StringBuffer("GeEkSfOrGeEkS");
 // Calling the Method
 convertOpposite(str);

 System.out.println(str);
 }
 }

3. Explain the following methods with syntax and suitable example,
 i). equals() and equalsIgnoreCase() ii). regionMatches()
 iii). startsWith() and endsWith() iv). equals() versus = =
 v). compareTo() vi). indexOf() vii). lastIndexOf()
equals() Versus ==
// equals() vs ==
class EqualsNotEqualTo {
public static void main(String args[]) {
String s1 = "Hello";
String s2 = new String(s1);
System.out.println(s1 + " equals " + s2 + " -> " +
s1.equals(s2));
System.out.println(s1 + " == " + s2 + " -> " + (s1 == s2));
}
}

o/p
Hello equals Hello -> true
Hello == Hello -> false

equals() and equalsIgnoreCase()
To compare two strings for equality, use equals(). It has this general form:
boolean equals(Object str)

boolean equalsIgnoreCase(String str)
// Demonstrate equals() and equalsIgnoreCase().
class equalsDemo {
public static void main(String args[]) {
String s1 = "Hello";
String s2 = "Hello";
String s3 = "Good-bye";
String s4 = "HELLO";
System.out.println(s1 + " equals " + s2 + " -> " +
s1.equals(s2));
System.out.println(s1 + " equals " + s3 + " -> " +
s1.equals(s3));
System.out.println(s1 + " equals " + s4 + " -> " +
s1.equals(s4));
System.out.println(s1 + " equalsIgnoreCase " + s4 + " -> " +
s1.equalsIgnoreCase(s4));
}
}

startsWith and endsWith

boolean startsWith(String str, int startIndex) "Foobar".startsWith("bar", 3)

eg.
"Foobar".endsWith("bar")
and
"Foobar".startsWith("Foo")

4>Explain the four types of JDBC drivers. Explain the working of JDBC
JDBC Drivers Types
JDBC driver implementations vary because of the wide variety of operating systems and hardware platforms in which Java operates. Sun has divided the implementation types into four categories, Types 1, 2, 3, and 4, which is explained below −
Type 1: JDBC-ODBC Bridge Driver
In a Type 1 driver, a JDBC bridge is used to access ODBC drivers installed on each client machine. Using ODBC, requires configuring on your system a Data Source Name (DSN) that represents the target database.
When Java first came out, this was a useful driver because most databases only supported ODBC access but now this type of driver is recommended only for experimental use or when no other alternative is available.
[image: DBMS Driver type 1]
The JDBC-ODBC Bridge that comes with JDK 1.2 is a good example of this kind of driver.
Type 2: JDBC-Native API
In a Type 2 driver, JDBC API calls are converted into native C/C++ API calls, which are unique to the database. These drivers are typically provided by the database vendors and used in the same manner as the JDBC-ODBC Bridge. The vendor-specific driver must be installed on each client machine.
If we change the Database, we have to change the native API, as it is specific to a database and they are mostly obsolete now, but you may realize some speed increase with a Type 2 driver, because it eliminates ODBC's overhead.
[image: DBMS Driver type 2]
The Oracle Call Interface (OCI) driver is an example of a Type 2 driver.
Type 3: JDBC-Net pure Java
In a Type 3 driver, a three-tier approach is used to access databases. The JDBC clients use standard network sockets to communicate with a middleware application server. The socket information is then translated by the middleware application server into the call format required by the DBMS, and forwarded to the database server.
This kind of driver is extremely flexible, since it requires no code installed on the client and a single driver can actually provide access to multiple databases.
[image: DBMS Driver type 3]
You can think of the application server as a JDBC "proxy," meaning that it makes calls for the client application. As a result, you need some knowledge of the application server's configuration in order to effectively use this driver type.
Your application server might use a Type 1, 2, or 4 driver to communicate with the database, understanding the nuances will prove helpful.
Type 4: 100% Pure Java
In a Type 4 driver, a pure Java-based driver communicates directly with the vendor's database through socket connection. This is the highest performance driver available for the database and is usually provided by the vendor itself.
This kind of driver is extremely flexible, you don't need to install special software on the client or server. Further, these drivers can be downloaded dynamically.
[image: DBMS Driver type 4]
MySQL's Connector/J driver is a Type 4 driver. Because of the proprietary nature of their network protocols, database vendors usually supply type 4 drivers.
5> List all statement objects and explain any two with example in JDBC.
· A Statement object is used for executing a static SQL statement and obtaining the results produced by it.
	Statement
	Use the for general-purpose access to your database. Useful when you are using static SQL statements at runtime. The Statement interface cannot accept parameters.

	PreparedStatement
	Use the when you plan to use the SQL statements many times. The PreparedStatement interface accepts input parameters at runtime.

	CallableStatement
	Use the when you want to access the database stored procedures. The CallableStatement interface can also accept runtime input parameters.

PreparedStatement
All parameters in JDBC are represented by the ? symbol, which is known as the parameter marker. You must supply values for every parameter before executing the SQL statement.
The setXXX() methods bind values to the parameters, where XXX represents the Java data type of the value you wish to bind to the input parameter. If you forget to supply the values, you will receive an SQLException.
Each parameter marker is referred by its ordinal position. The first marker represents position 1, the next position 2, and so forth. This method differs from that of Java array indices, which starts at 0.
All of the Statement object's methods for interacting with the database (a) execute(), (b) executeQuery(), and (c) executeUpdate() also work with the PreparedStatement object.

PreparedStatement pstmt = null;
try {
 String SQL = "Update Employees SET age = ? WHERE id = ?"; pstmt = conn.prepareStatement(SQL);
 . . .
}
catch (SQLException e)
{ . . . }
finally {
 pstmt.close();
 }

CallableStatement

DELIMITER $$
DROP PROCEDURE IF EXISTS `EMP`.`getEmpName` $$
CREATE PROCEDURE `EMP`.`getEmpName` (IN EMP_ID INT, OUT EMP_FIRST VARCHAR(255))
BEGIN SELECT first INTO EMP_FIRST
FROM Employees WHERE ID = EMP_ID;
END $$ DELIMITER ;
· Three types of parameters exist: IN, OUT, and INOUT. The PreparedStatement object only uses the IN parameter. The CallableStatement object can use all the three.
· Here are the definitions of each −
	Parameter
	Description

	IN
	A parameter whose value is unknown when the SQL statement is created. You bind values to IN parameters with the setXXX() methods.

	OUT
	A parameter whose value is supplied by the SQL statement it returns. You retrieve values from theOUT parameters with the getXXX() methods.

	INOUT
	A parameter that provides both input and output values. You bind variables with the setXXX() methods and retrieve values with the getXXX() methods.

The following code snippet shows how to employ the Connection.prepareCall() method to instantiate a CallableStatementobject based on the preceding stored procedure −
CallableStatement cstmt = null;
 try { String SQL = "{call getEmpName (?, ?)}";
cstmt = conn.prepareCall (SQL);
 . . . }
catch (SQLException e)
 { . . . }
finally { . Cstmt.close();
 }

7> Explain the steps required to establish a database connection using JDBC with code
1. Import JDBC packages.
2. Load and register the JDBC driver.
3. Open a connection to the database.
4. Create a statement object to perform a query.
5. Execute the statement object and return a query resultset.
6. Process the resultset.
7. Close the resultset and statement objects.
8. Close the connection.
These steps are described in detail in the sections that follow.
Import JDBC Packages
This is for making the JDBC API classes immediately available to the application program. The following import statement should be included in the program irrespective of the JDBC driver being used:
import java.sql.*;
Additionally, depending on the features being used, Oracle-supplied JDBC packages might need to be imported. For example, the following packages might need to be imported while using the Oracle extensions to JDBC such as using advanced data types such as BLOB, and so on.
import oracle.jdbc.driver.*;
import oracle.sql.*;
Load and Register the JDBC Driver
This is for establishing a communication between the JDBC program and the Oracle database. This is done by using the static registerDriver() method of the DriverManager class of the JDBC API. The following line of code does this job:
DriverManager.registerDriver(new oracle.jdbc.driver.OracleDriver());
JDBC Driver Registration
For the entire Java application, the JDBC driver is registered only once per each database that needs to be accessed. This is true even when there are multiple database connections to the same data server.
Alternatively, the forName() method of the java.lang.Class class can be used to load and register the JDBC driver:
Class.forName("oracle.jdbc.driver.OracleDriver");
However, the forName() method is valid for only JDK-compliant Java Virtual Machines and implicitly creates an instance of the Oracle driver, whereas the registerDriver() method does this explicitly.
Connecting to a Database
Once the required packages have been imported and the Oracle JDBC driver has been loaded and registered, a database connection must be established. This is done by using the getConnection()method of the DriverManager class. A call to this method creates an object instance of thejava.sql.Connection class. The getConnection() requires three input parameters, namely, a connect string, a username, and a password. The connect string should specify the JDBC driver to be yes and the database instance to connect to.
The getConnection() method is an overloaded method that takes
· Three parameters, one each for the URL, username, and password.
· Only one parameter for the database URL. In this case, the URL contains the username and password.
The following lines of code illustrate using the getConnection() method:
Connection conn = DriverManager.getConnection(URL, username, passwd);
Connection conn = DriverManager.getConnection(URL);
where URL, username, and passwd are of String data types.
We will discuss the methods of opening a connection using the Oracle JDBC OCI and thin _drivers.
When using the OCI driver, the database can be specified using the TNSNAMES entry in the tnsnames.ora file. For example, to connect to a database on a particular host as user oratest and password oratest that has a TNSNAMES entry of oracle.world, use the following code:
Connection conn = DriverManager.getConnection("jdbc:oracle:oci8:
@oracle.world", "oratest", "oratest");
Both the ":" and "@" are mandatory.
When using the JDBC thin driver, the TNSNAMES entry cannot be used to identify the database. There are two ways of specifying the connect string in this case, namely,
· Explicitly specifying the hostname, the TCP/IP port number, and the Oracle SID of the database to connect to. This is for thin driver only.
· Specify a Net8 keyword-value pair list.
For example, for the explicit method, use the following code to connect to a database on host trainingwhere the TCP/IP listener is on port 1521, the SID for the database instance is Oracle, the username and password are both oratest:
Connection conn = DriverManager.getConnection
 ("jdbc:oracle:thin:@training:1521:Oracle",
 "oratest", "oratest");
For the Net8 keyword-value pair list, use the following:
Connection conn = DriverManager.getConnection
 ("jdbc:oracle:thin@(description=(address=
 (host=training)(protocol=tcp)(port=1521))
 (connect_data=(sid=Oracle))) ", _"oratest", "oratest");
This method can also be used for the JDBC OCI driver. Just specify oci8 instead of thin in the above keyword-value pair list.
Querying the Database
Querying the database involves two steps: first, creating a statement object to perform a query, and second, executing the query and returning a resultset.
Creating a Statement Object
This is to instantiate objects that run the query against the database connected to. This is done by the createStatement() method of the conn Connection object created above. A call to this method creates an object instance of the Statement class. The following line of code illustrates this:
Statement sql_stmt = conn.createStatement();
Executing the Query and Returning a ResultSet
Once a Statement object has been constructed, the next step is to execute the query. This is done by using the executeQuery() method of the Statement object. A call to this method takes as parameter a SQL SELECT statement and returns a JDBC ResultSet object. The following line of code illustrates this using the sql_stmt object created above:
ResultSet rset = sql_stmt.executeQuery
 ("SELECT empno, ename, sal, deptno FROM emp ORDER BY ename");
Alternatively, the SQL statement can be placed in a string and then this string passed to the executeQuery() function. This is shown below.
String sql = "SELECT empno, ename, sal, deptno FROM emp ORDER BY ename";
ResultSet rset = sql_stmt.executeQuery(sql);
Statement and ResultSet Objects
Statement and ResultSet objects open a corresponding cursor in the database for SELECT and other DML statements.
The above statement executes the SELECT statement specified in between the double quotes and stores the resulting rows in an instance of the ResultSet object named rset.
Processing the Results of a Database Query That Returns Multiple Rows
Once the query has been executed, there are two steps to be carried out:
· Processing the output resultset to fetch the rows
· Retrieving the column values of the current row
The first step is done using the next() method of the ResultSet object. A call to next() is executed in a loop to fetch the rows one row at a time, with each call to next() advancing the control to the next available row. The next() method returns the Boolean value true while rows are still available for fetching and returns false when all the rows have been fetched.
The second step is done by using the getXXX() methods of the JDBC rset object. Here getXXX()corresponds to the getInt(), getString() etc with XXX being replaced by a Java datatype.
The following code demonstrates the above steps:
String str;
while (rset.next())
 {
 str = rset.getInt(1)+ " "+ rset.getString(2)+ "
 "+rset.getFloat(3)+ " "rset.getInt(4)+ "\n";
 }
byte buf[] = str.getBytes();
OutputStream fp = new FileOutputStream("query1.lst");
fp.write(buf);
fp.close();
Here the 1, 2, 3, and 4 in rset.getInt(), rset.getString(), getFloat(), and getInt()respectively denote the position of the columns in the SELECT statement, that is, the first column empno, second column ename, third column sal, and fourth column deptno of the SELECT statement respectively.
Specifying get() Parameters
The parameters for the getXXX() methods can be specified by position of the corresponding columns as numbers 1, 2, and so on, or by directly specifying the column names enclosed in double quotes, asgetString("ename") and so on, or a combination of both.
Closing the ResultSet and Statement
Once the ResultSet and Statement objects have been used, they must be closed explicitly. This is done by calls to the close() method of the ResultSet and Statement classes. The following code illustrates this:
rset.close();
sql_stmt.close();
If not closed explicitly, there are two disadvantages:
· Memory leaks can occur
· Maximum Open cursors can be exceeded
Closing the ResultSet and Statement objects frees the corresponding cursor in the database.
Closing the Connection
The last step is to close the database connection opened in the beginning after importing the packages and loading the JDBC drivers. This is done by a call to the close() method of the Connection class.
The following line of code does this:
conn.close();
7a> explain three types of getConnection() method with example
Connection getConnection (String url, String user, String password)
· Connects to given JDBC URL with given user name and password
· Throws java.sql.SQLException
· returns a Connection object

 After you've loaded the driver, you can establish a connection using the DriverManager.getConnection() method. The list of the three overloaded DriverManager.getConnection() methods –

· getConnection(String url) or getConnection(String url, String pass, String user)

Databases limit access to the authorized users and require J2EE to supply user id and password with the request to access the database. In this case the above method is used.
Try{
Class.forName(“sun:jdbc.odbc.JdbcOdbcDriver”);
Db=DriverManager.getConnection(url,userId,password);
}

· getConnection(String url, Properties prop)
There might be occasions when a DBMS require information besides userid and password before DBMS grant access to the database.
This additional information is called properties and that must be associated with Properties object.
The property is stored in text file. And then loaded by load method of Properties class.
Connection db;
Properties props=new Properties();
Try {
FileInputStream inputfile=new FileInputStream(“text.txt”);
Prop.load(inputfile);
}

· getConnection(String url, String user, String password)

7b> Explain Connection Pool and TimeOut.
TimeOut.

· Competition to use the same database is a common occurrence in the J2EE environment and can lead to performance degradation of J2EE application
· Database may not connect immediately delayed response because database may not available.
· Rather than delayed waiting time J2EE component can stop connection after some time. This time can be set with the following method:
· public static void DriverManager.setLoginTimeout(int sec).
· Public static int DriverManager.getLoginTimeout() return the current timeout in seconds.
Connection Pool

Establishing JDBC connections is resource-expensive, especially when the JDBC API is used in a middle-tier server environment, such as when DataDirect Connect for JDBC or DataDirect SequeLink for JDBC is running on a Java-enabled web server. In this type of environment, performance can be improved significantly when connection pooling is used. Connection pooling means that connections are reused rather than created each time a connection is requested. To facilitate connection reuse, a memory cache of database connections, called a connection pool, is maintained by a connection pooling module as a layer on top of any standard JDBC driver product.

Connection pooling is performed in the background and does not affect how an application is coded; however, the application must use a DataSource object (an object implementing the DataSource interface) to obtain a connection instead of using the DriverManager class. A class implementing the DataSource interface may or may not provide connection pooling. A DataSource object registers with a JNDI naming service. Once a DataSource object is registered, the application retrieves it from the JNDI naming service in the standard way.

For example:
Context ctx = new InitialContext();
DataSource ds = (DataSource) ctx.lookup("jdbc/SequeLink");

If the DataSource object provides connection pooling, the lookup returns a connection from the pool if one is available. If the DataSource object does not provide connection pooling or if there are no available connections in the pool, the lookup creates a new connection. The application benefits from connection reuse without requiring any code changes. Reused connections from the pool behave the same way as newly created physical connections. The application makes a connection to the database and data access works in the usual way. When the application has finished its work with the connection, the application explicitly closes the connection.

For example:
Connection con = ds.getConnection("scott", "tiger");
// Do some database activities using the connection...
con.close();

The closing event on a pooled connection signals the pooling module to place the connection back in the connection pool for future reuse.

image4.jpeg
Local Computer

Middlewiare Server

Java Application

Application Code

JDBC Type 1 Driver

|

Type 3
JDBC — Not Pure Java.

JDBC Typo 2 Driver

JDBC Type 4 Driver

Propriotary Vandor Notwork
‘Specific Protocol Communication

image5.jpeg
Local Computer

Java Application
Application Code

!

Type
100% Puro Java__ [*] Local

Proprietary Vendor Notwork.
Specific Protocol | Communication

Daabse Sarer

image1.png
Svms .,

@
§
§
‘:‘
* CMRIT
N
* CMR INSTITUTE OF TECHNOLOGY, BENGALURU.

ACCREDITED WITH A+ GRADE BY NAAC

image2.jpeg
Local Computer

Java Application

Application Code

H

Type 1

JDBC ODEC Bridge Local

DBMS

Propristary Vondor Notwork
Specific Protocol Communication

Ditbasa Barver

image3.jpeg
Local Computer

Java Application || DB Vendor Driver.
Application Code
H]
Local
Typo2- Nativo API DBMS
Propristary Vondor Notwork
Specific Protocol Communication

Ditbasa Barver

