	
	[image:]

	Scheme of Evaluation for Internal Assessment Test 1 – September 2018

	Sub:
	Dot Net Application and Framework Development
	Sub Code:
	15CS564
	Branch:
	CSE/ISE

	Date:
	10/09/2018
	Duration:
	90 min’s
	Max Marks:
	50
	Sem / Sec:
	5/A,B & C

	Answer any FIVE FULL Questions
	
	
	

	
	
	
	
	

	1 (a)

	What are namespaces? Why name spaces are used? Explain

Solution : (Definition:2M ,Explanation with example:3M)

A namespace is designed for providing a way to keep one set of names separate from another. The class names declared in one namespace does not conflict with the same class names declared in another.
The syntax for creating namespace is as follows:
A namespace definition begins with the keyword namespace followed by the namespace name as follows –

Namespace namespace_name
{
// code declarations
}

Example:
using System;
namespace Mynamespace
{
 class Myclass
 {
 Public void Mymethod()
 {

 Console.WriteLine(“ Creating my namespace”);
 }
 }
}

There are two issues for a developer by using namespace

1) It is harder to understand and maintain big programs than the smaller one.
2) Big programs contain more classes and more methods, which requires the programmers to keep track of more names.
Sometimes two or more classes in a different project will have same name, this is known as name clashes. To overcome this issue ,in past the programmers try to solve name clashing problem by prefixing names with some sort of qualifier .But by adding the prefix the class names becomes larger and remembering this is difficult so this method is not stable. To overcome this issues we use namespace, which is a container that puts all the classes used in single project. By using namespace we can give the same class name in different project. To include any namespace “using” directive must be used.

 A namespace can contain another namespace. It is called nested namespace. The nested namespace and its members can also be accessed using the dot (.) operator.
The syntax for creating nested namespace is as follows:
namespace namespace_name

{
 // code declarations

 namespace namespace_name

 {

 // code declarations
 }

}
Example:
using System;

namespace Mynamespace
{
 namespace Nested
 {
 class SampleClass
 {
 Public void Mymethod()
 {

 Console.WriteLine(“ Creating my namespace”);
 }

 }

 }

}

namespace MyProgram
{
 public class MyClass
 {

 public static void Main()
 {
 MyNamespace.Nested.SampleClass.Mymethod();
 }

 }

}

	[05]	[5M]

	 (b)

2

3(a)

(b)

4(a)

(b)

5

 6

7(a)

(b)

	 What is short-circuiting using Boolean operators? Explain with example.

Solution: (Definition:2M ,Explanation with example:3M)

Short-circuit is a method for evaluating logical operators AND and OR. In this method, the whole expression can be evaluated to true or false without evaluating all sub expressions.
AND, OR operators can be found in the following ways,
· & – Logical AND operator
· | – Logical OR operator

Both of these operators are non short-circuit in nature.

· && – Conditional AND operator
· || – Conditional OR operator

Both of these are short-circuited operators and collectively known as Conditional Logical Operators.
& and | can be used as both Boolean operand as well as Numeric operands like Bit-wise operation. But && and || operands can only be applied to Boolean operands.

Example:
bool C1() {return false;}
bool C2() {return true;}
public A()
{
 If(C1() & C2())
 {
 // inside code will execute and both operand are evaluated
 }
 If(C2() | C1())
 {
 // inside code will execute and both operand are evaluated
 }

}

In the above program both operands Condition1() and Condition2() are evaluated.

Example:
bool C1() {return false;}
bool C2() {return true;}
public A()
{
 If(C1() && C2())
 {
 // inside code will execute and C2 skipped
 }
 If(C2() | | C1())
 {
 // inside code will execute and and C1 skipped
 }

}

In the above program for AND operations if any of the operand evaluated to false then total expression evaluated to false then there is no need to evaluate remaining expressions, And in case of OR operation if any of the operand evaluated to true then remaining evaluations can be skipped

Explain how errors and exceptions are managed in C# with an example.

Solution: (Explanation with example:10M)

Exceptions are unforeseen errors that happen in programs. Most of the time, you can detect and handle program errors in the code. For example, validating user input, checking for null objects and verifying the values returned from the methods are what you expect, are al examples of good standard error handling that you should be doing all the time.
All the exception handling is based on only four keywords: try, catch, throw and finally. All exceptions class is derived from System . Exception namespace.

· try − A try block identifies a block of code for which particular exceptions is activated. It is followed by one or more catch blocks.
· catch − A program catches an exception with an exception handler at the place in a program where you want to handle the problem. The catch keyword indicates the catching of an exception.
· finally − The finally block is used to execute a given set of statements, whether an exception is thrown or not thrown. For example, if you open a file, it must be closed whether an exception is raised or not.
· throw − A program throws an exception when a problem shows up. This is done using a throw keyword.
C# exceptions are represented by classes. The exception classes in C# are mainly directly or indirectly derived from the System.Exception class. Some of the exception classes derived from the System.Exception class are the System.ApplicationException and System.SystemException classes.
The System.ApplicationException class supports exceptions generated by application programs. Hence the exceptions defined by the programmers should derive from this class.
The System.SystemException class is the base class for all predefined system exception.
The following table provides some of the predefined exception classes derived from the Sytem.SystemException class –
	Sr.No.
	Exception Class & Description

	1
	System.IO.IOException :Handles I/O errors.

	2
	System.IndexOutOfRangeException :Handles errors generated when a method refers to an array index out of range.

	3
	System.ArrayTypeMismatchException : Handles errors generated when type is mismatched with the array type.

	4
	System.NullReferenceException : Handles errors generated from referencing a null object.

	5
	System.DivideByZeroException: Handles errors generated from dividing a dividend with zero.

	6
	System.InvalidCastException
Handles errors generated during typecasting.

	7
	System.OutOfMemoryException
Handles errors generated from insufficient free memory.

	8
	System.StackOverflowException
Handles errors generated from stack overflow.

Example:
using System;
namespace ErrorHandlingApplication {
 class DivNumbers {
 int result;
 DivNumbers() {
 result = 0;
 }
 public void division(int num1, int num2) {
 try {
 result = num1 / num2;
 } catch (DivideByZeroException e) {
 Console.WriteLine("Exception caught: {0}", e);
 } finally {
 Console.WriteLine("Result: {0}", result);
 }
 }
 static void Main(string[] args) {
 DivNumbers d = new DivNumbers();
 d.division(25, 0);
 Console.ReadKey();
 }
 }
}
When the above code is compiled and executed, it produces the following result –
Exception caught: System.DivideByZeroException: Attempted to divide by zero.
at ...
Result: 0

What are enumerations? Explain with an example.

Solution: (Definition :2 M Explanation with example:2M)

enum is a value type data type. The enum is used to declare a list of named integer constants. It can be defined using the enum keyword directly inside a namespace, class, or structure. The enum is used to give a name to each constant so that the constant integer can be referred using its name.

Example:
public class EnumTest
{
 enumDay {Sun,Mon,Tue,Wed,Thu,Fri,Sat};
 Public static void Main()
 {
 int x=(int)Day.Sun;
 int y=(int)Day.Fri;
 Console.WriteLine(“Sun={0}”,x);
 Console.WriteLine(“Fri={0}”,y);
 }
}

In the above example, an enumeration, Day, is declared. Two enumerators are explicitly converted to integer and assigned to integer variables. The following will be the output of the program

Output:
Sun = 0
Fri = 5

Write a C# program to swap two numbers using out and ref parameters.
Solution: (Program:6M)

/* PROGRAM TO SWAP NUMBERS USING REF */
class Swap
{
 void swap(ref int a, ref int b)
 {
 int temp;
 temp = a;
 a = b;
 b = temp;
 }
 public static void Main()
 {
 int a=1 ;
 int b =2;
 Swap s = new Swap();
 Console.WriteLine("Before swap a={0} b={1}" + a + b);
 s.swap(ref a, ref b);
 Console.WriteLine("Before swap a={0} b={1}" + a + b);
 Console.ReadKey();
 }
}
/* PROGRAM TO SWAP NUMBERS USING OUT PARAMETERS */

class A
{
 void Assign(out int x,out int y)
 {
 x = 5;
 y = 6;
 int sum = x + y;
 Console.WriteLine(sum);
 Console.ReadKey();
 }
 public static void Main()
 {
 int a, b;
 A s = new A();
 s.Assign(out a, out b);

 }

}

What is a class? Explain the access specifiers of class with an example.

Solution:

(Definition :1 M Explanation access specifiers with example:3M)

 A class enables you to create your own custom types by grouping together variables of other types, methods and events. A class can be defined by using the class keyword.
Syntax:
public class class_name
{
 //declaration of Fields, properties, methods and events
}

Example:
using System;
public class funcexer3
{
 public static int Sum(int num1, int num2)
 {
 int total;
 total = num1 + num2;
 return total;
 }

 public static void Main()
 {
	 Console. Write("\n\nFunction to calculate the sum of two numbers :\n");
 Console.Write("--\n");
	 Console. Write("Enter a number: ");
 int n1= Convert.ToInt32(Console.ReadLine());
 Console.Write("Enter another number: ");
 int n2= Convert.ToInt32(Console.ReadLine());
 Console. WriteLine("\nThe sum of two numbers is : {0} \n", Sum(n1,n2));
 }
}
Access Specifiers are used to define the visibility of a class property or method. It can restrict access so that other programs cannot see the properties or methods of a class. There are 5 types of access modifiers. They are Public, Private, Protected, Internal and Protected Internal.
· Public: Anywhere from the class
· Private: Only within the class
· Protected: Only within that class and the sub classes of that class
· Internal: Within the assembly of the class
· Protected Internal: Within that class, sub classes of that class and and assembly
Public
Using Public, an event or a variable can be accessed from outside of the class, where it belongs and from the outside of the assembly.
class ClassTest
{
 //Public method
 public void MethodPublic()
 {
 // defination of MethodPublic
 }
}

// to access the method
class Program
{
 static void Main(string[] args)
 {
 ClassTest objClassTest = new ClassTest();

 objClassTest.MethodPublic(); // valid code to access.
 }
}
Private
It restricts the use of methods and variables only within the class itself. It can't be used from outside of the class. As you declare a private constructor of a class, that class can't be accessed from outside that class, you can't create an object of that class.
Example 1: Private keyword
class ClassTest
{
 //Private method
 private void MethodPrivate()
 {
 // defination of MethodPrivate
 }
}
// to access the method
class Program
{
 static void Main(string[] args)
 {
 ClassTest objClassTest = new ClassTest();

 objClassTest.MethodPrivate(); // invalid code to access.
 }
}
[image: https://3.bp.blogspot.com/-WLMWIOyoX60/Vg7ME-UTTpI/AAAAAAAAAlM/G2apqoj5TL4/s1600/1.png]
Example 2: Private Constructor
class ClassTest
{
 private ClassTest() { } // private constructor
}
// to access the method
class Program
{
 static void Main(string[] args)
 {
 // invalid code. can't create an object of this class
 ClassTest objClassTest = new ClassTest();
 }
}
Protected
This allows variables and methods to access from that class and the sub class of the class. That means that methods can be accessed within that class and from the classes, which actually inherit that class.
class ClassTest
{
 //Protected variable
 protected int _a;
}

class ClassTest2 : ClassTest
{
 ClassTest2()
 {
 this._a = 10; // can access from this class
 }
}

class ClassTest3
{
 ClassTest3()
 {
 this._a = 10; // can't access from this class
 }
}
Internal
This allows the access after Protected. As Protected, it also allows to access the methods and variables from that class and the sub classes of that class. It added the assembly into it. That means the variables and methods can be accessed within the assembly where the class belongs. Now make sure that here we are talking about Namespace, because Namespace and assembly are slightly different. An assembly can hold more than one Namespace. Assemblies are actually the DLL of the project.
class ClassTest
{
 internal void MethodInternal()
 {
 // do your code
 }
}
// to access the method
class Program
{
 static void Main(string[] args)
 {
 ClassTest objClassTest = new ClassTest();

 objClassTest.MethodInternal(); // valid code to access.
 }
}
Protected Internal
Protected Internal allows you to access the variables and methods to access from that class and sub classes of that class. Also allows to access within the same assembly. This means in protected, if the class is inheriting the super class and the method or variable is protected, then the assembly doesn't matter to access. But in the Internal, the assembly matters if the class is inheriting the super class. That is why we use Protected Internal access modifier.
class ClassTest
{
 protected internal string name; // protected internal
 public void print()
 {
 Console.WriteLine("\nMy name is " + name);
 }
}
// to access the method
class Program
{
 static void Main(string[] args)
 {
 ClassTest objClassTest = new ClassTest();
 // Accepting value in protected internal variable
 objClassTest.name = "Arka";
 objClassTest.print();
 }
}

Write a C# program to illustrate the concept of Value Types and Reference types.

Solution: (Program : 3+3=6M)

Program for Value Type:

When you pass a value type variable from one method to another method, the system creates a separate copy of a variable in another method, so that if value got changed in the one method won't affect on the variable in another method.

using System;
class ValueType
{
 static void ChangeValue(int x)
 {
 x = 200;

 Console.WriteLine(x);
 }

static void Main(string[] args)
{
 int i = 100;

 Console.WriteLine(i);

 ChangeValue(i);

 Console.WriteLine(i);
}
}

Output:
100
200
100

Program for Reference Type:
A reference type doesn't store its value directly. Instead, it stores the address where the value is being stored. In other words, a reference type contains a pointer to another memory location that holds the data.

using System;
class ValueType
{
 static void ChangeReferenceType(Student std2)
 {
 std2.StudentName = "Steve";
 }
 public static void Main(string[] args)
 {
 Student std1 = new Student();
 std1.StudentName = "Bill";
 ChangeReferenceType(std1);
 Console.WriteLine(std1.StudentName);
 }
}

Output: Steve
Explain the differences in behavior between a structure and a class with Examples.

Solution: (Explanation with example :10M)

Difference between structure and class is as follows

	Structure
	Class

	It is a value type
	It is a reference type

	Instance are called as values and live on stack
	Instance are called as objects and live on heap

	Users cannot create default constructor because already complier has one and user can create parameterized constructor
	Even though the complier has default constructor, still user can create default constructor and parameterized constructor

	Cannot initialize for variables if that variable is not initialized in the parameterized constructor
	It will initialize the default values if the parameterized constructor is not initialized value for that variable

	Cannot initialize the fields during the point of declaration
	We can initialize the instance variable during the point of declaration

	Cannot have a null reference (unless Nullable is used)
	The reference can be null

Class MyClass
{
Public Int DataMember; 	
public static void Main ()
{
	MyClass M1=new MyClass();
	M1.DataMember=10;
	MyClass M2 = M1;
	M2.DataMember=20;
}
}

In the above program, “MyClass M2 =M1” instruction indicates that both variables of type MyClass M1 and M2 will point to the same memory location. It basically assigns the same memory location into another variable of same type. So if any changes that we make in any one of the objects type MyClass will have an effect on another since both are pointing to the same memory location. M1.DataMember=10” at this line both the object’s data members will contain the value of 10. M2.DataMember=20 at this line both the object’s data member will contains the value of 20. Eventually, we are accessing data members of an object through pointers.

Unlike classes, structures are value types. For example:

Structure MyStructure
{
Public Int DataMember; 	
}

Static Public void Main (string [] arg)
	{
	MyStructure S1 =new MyStructure ();
	S1.DataMember=10;
	MyStructure S2 =S1;
	S2.DataMember=20;
}

In the above program, instantiating the object of MyStructure type using new operator and storing address into StructObject variable of type MyStructure and assigning value 10 to data member of the structure using “ S1.DataMember=10”. In the next line, I am declaring another variable S2 of type MyStructure and assigning S1 into that. Here .NET C# compiler creates another copy of S1 object and assigns that memory location into MyStructure variable S2.So whatever change we make on S1 will never have an effect on another variable S2 of type MyStructrue. So Structures are value types

Write a C# program to compute the
i) Row sum of Jagged Array.
ii) Row Sum and Column Sum of Rectangular Array.

Solution: (Program :5+5 =10M)

Program for Row sum of Jagged Array: (5M)

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

public class Row
 {
 public static void Main()
 {
 int[][] jag = new int[3][];
 jag[0] = new int[2];
 jag[1] = new int[4];
 jag[2] = new int[3];
 int[] sum = new int[3];
 int result = 0;
 int i, j;
 for (i = 0; i < 3; i++)
 sum[i] = 0;
 Console.WriteLine("Enter the size of the array ");
 for (i = 0; i < jag.Length; i++)
 {
 Console.WriteLine("Enter the values off array " + (i + 1) + " jag:");
 for (j = 0; j < jag[i].Length; j++)
 {
 jag[i][j] = int.Parse(Console.ReadLine());
 }
 }
 for (i = 0; i < jag.Length; i++)
 {
 for (j = 0; j < jag[i].Length; j++)
 {
 sum[i] = sum[i] + jag[i][j];
 }
 }
 for (i = 0; i < 3; i++)
 result = result + sum[i];
 Console.WriteLine("The result of individual jags row-wise: ");
 for (i = 0; i < 3; i++)
 Console.Write(sum[i] + "\t");
 Console.WriteLine();
 Console.WriteLine("The final sum of all the elements in the jagged array:" + result);
 Console.Read();
 }
 }

Program for Row Sum and Column Sum of Rectangular Array: (5M)

using System;
public class Sum
{
 public static void Main()
{
 int i,j,n;
	 int[,] arr1 = new int[10,10];
		int[] rsum = new int[10];
		int[] csum = new int[10];
	
 Console.Write("\n\nFind sum of row an column of a Matrix:\n ");
 Console.Write("---\n");	
	

 Console.Write("Input the size of the square matrix : ");
	 n = Convert.ToInt32(Console.ReadLine());
	
	 Console.Write("Input elements in the matrix :\n");
 for(i=0;i<n;i++)
 {
 for(j=0;j<n;j++)
 {
	 Console.Write("element - [{0}],[{1}] : ",i,j);
			 arr1[i,j]=Convert.ToInt32(Console.ReadLine());
 }
 }
	 Console.Write("The matrix is :\n");
	 for(i=0;i<n;i++)
	 {
	 for(j=0;j<n ;j++)
	 Console.Write("{0} ",arr1[i,j]);
	 Console.Write("\n");
	 }

 /* Sum of rows */
 for(i=0;i<n;i++)
 {
	 rsum[i]=0;
	 for(j=0;j<n;j++)
	 rsum[i]=rsum[i]+arr1[i,j];
 }

 /* Sum of Column */
 for(i=0;i<n;i++)
 {
	 csum[i]=0;
	 for(j=0;j<n;j++)
		csum[i]=csum[i]+arr1[j,i];
 }

 Console.Write("The sum or rows and columns of the matrix is :\n");
 for(i=0;i<n;i++)
 {
	 for(j=0;j<n;j++)
	 Console.Write("{0} ",arr1[i,j]);
	 Console.Write("{0} ",rsum[i]);
	 Console.Write("\n");
 }
 Console.Write("\n");
	 for(j=0;j<n;j++)
 {
	 Console.Write("{0} ",csum[j]);
 }
 Console.Write("\n\n");
		}	
 }
 How compound assignment statements are used in C#.

Solution: (Explanation : 4M with example:2M = 6M)

The following statements uses the assignment operator (=) to change the value of A to 42 and adds 42 to B

A=42;
B=B+42;

After this statements runs the value of A is 42 and the value of B is 42 more than it was before.
Adding a value to a variable is so common that C# provides, a way to perform this task in a shorthand manner by using the operator +=. To add 42 to B we can write the following statements

B+=42;

We can use this notation to combine arithmetic operator with the assignment operator, as shown below. These operators are collectively known as the compound assignment operators.

Variable +=number;
Variable -=number;
Variable *=number;
Variable /=number;
Variable %=number;

Example:
int value = 10;
value += 10; // value = 20
value -= 5; // value = 15
value *= 10; // value = 150
value /= 3; // value = 50
value %= 8; // value = 2

The compound assignment operators share the same precedence and right associativity as the simple assignment operator (=).

The += operator also works on strings, it appends one string to the end of another. For example , the following code displays “Hello World” on the console

String name = “World”;
String name1=”Hello”;
name1+=name;
Console.WriteLine(name1);

We cannot use any of the other compound assignment operators on strings.

Write a C# program to add two integers, float, and double
i) Use the concept of static methods.
ii) Use the concept of non-static methods.
iii) Use the concept of function overloading.
Solution: (Program = 4M)

using System;
class Add1
{

 // non static method

 public int calculation(int x, int y)
 {
 int val = x + y;
 return val;
 }

 // non static method

 public static double cal (double x, double y)
 {
 double val = x + y;
 return val;
 }

 // adding two integer values for method overloading

 public int Add1(int a, int b)
 {
 int sum = a + b;
 return sum;
 }

 // adding three float values for method overloading.

 public float Add1(float a, float b, float c)
 {
 float sum = a + b + c;
 return sum;
 }

 // Main Method
 public static void Main(String[] args)
 {

 // Creating Object
 Add1 ob = new Add1();

 int sum1 = ob.Add1(1, 2);
 Console.WriteLine("sum of the two "
 + "integer value : " + sum1);

 float sum2 = ob.Add1(1, 2, 3);
 Console.WriteLine("sum of the three "
 + "integer value : " + sum2);

 int newval = ob.calculation(12,12);
 Console.WriteLine(newval);
 Console.WriteLine(cal(12,12));
 Console.ReadKey();

 }

}
	 [05]	[5M]

[10M]

[4M]
[4M]

[6M]

[6M]

[4M]

[4M]

[6M]

[10M]

[10M]

[6M]

[4M]

[6M]

image1.png

image2.png

