IAT-1 SOLUTION ADE

Answer COMPULSARILY

Simplify the following expression using Quine –McCluskey's method

 $F(A,B,C,D) = \Sigma m(0,1,2,3,10,11,12,13,14,15).$

Solution: Step 1: List all minterms in the binary form as shown in table (column (a)).

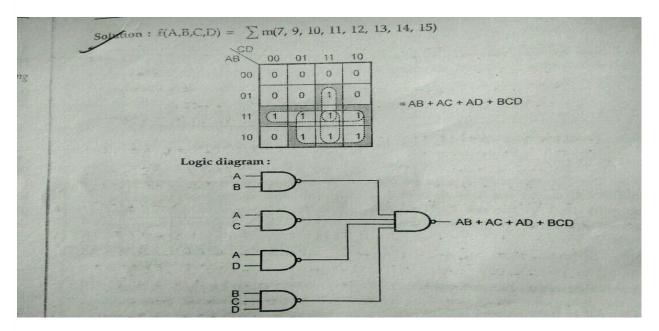
Step 2: Arrange the minterms according to no. of 1s, as shown in

tab	e	col	lumn	(b))).
and the least th		10000	TO THE OWNER OF THE OWNER OWNER OF THE OWNER OWNE	1	11

Minterms	S Binary representation Minterms	Minterms	Binary representation
m ₀	0000	m ₀	0000 ✓
m ₁	0001	m ₁	0001 🗸
m ₂	0010	m ₂	0010 ✓
m ₃	0011	m ₃	0011 🗸
m ₁₀	1010	m ₁₀	1010 🗸
m ₁₁	1011	m ₁₂	1100 🗸
m ₁₂	1100	m ₁₁	1011
m ₁₃	1101	m ₁₃	1101 ✓
m ₁₄	1110	m ₁₄	1110 ✓
m ₁₅	1111	m ₁₅	1111 🗸

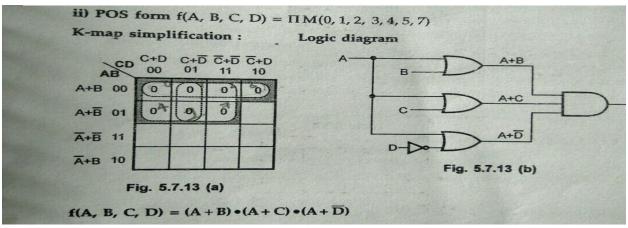
Step 3: Compare each binary no. with every term in the adjacent next high category and if they differ only by one position, put a check mark and copy the term the next column with '-' in the position that they differ.

Step 4: Apply the same process described in step 3 for the resultant column are continue these cycles until a single pass through cycle yields us further elimination iterals.

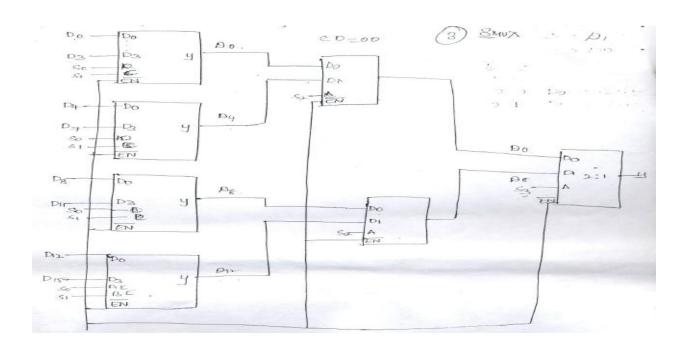

Minterms	Binary representation	Minterms	Binary representation
0, 1	000	0, 1, 2, 3	00
0, 2	00-0	2, 3, 10, 11	-01-
1, 3	00-1	10, 11, 14, 15	1 - 1 -
2, 3	001-	12, 13, 14, 15	11
2, 10	-010		
3, 11	-011		
10, 11	101-		
10, 14	1-10		
12, 13	110-		
12, 14	11-0		
11, 15	1 - 1 1		
13, 15	11-1		
14, 15	111-		

Step 5: Select the minimum number of prime implicants which must cover all thinterms.

Prime Implicants	m ₀		m ₂		m ₁₀		m ₁₂	m ₁₂ m ₁₃		m ₁₆
	(col 1)	(col 2)	(col 3)	(col 4)	(col 5)	(col 6)	(col 7)	(col 8)	m ₁₄	(-1.4
B 12, 13, 14, 15 🗸									(001 9)	(60) 10
C 10, 11, 14, 15 ✓					0		0	•	0	0
C 2, 3, 10, 11				•		•			0	0
B 0, 1, 2, 3 ✓	•	•	•	0		•				

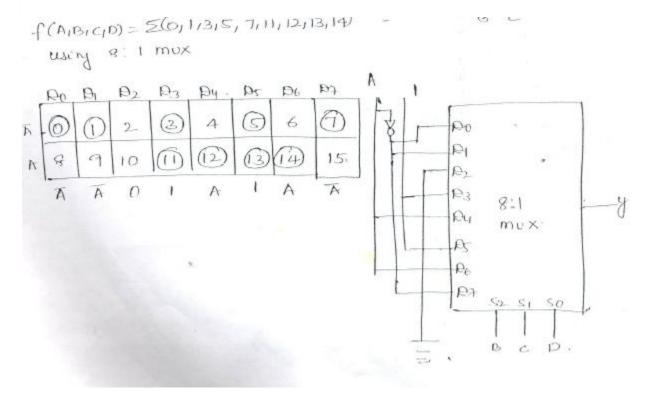

2 A) Obtain the simplified Boolean equation by using K-map method and express it in SOP form. Realize logic circuit by using NAND gates only

 $F(A,B,C,D)=\Sigma m(7,9,10,11,12,13,14,15).$

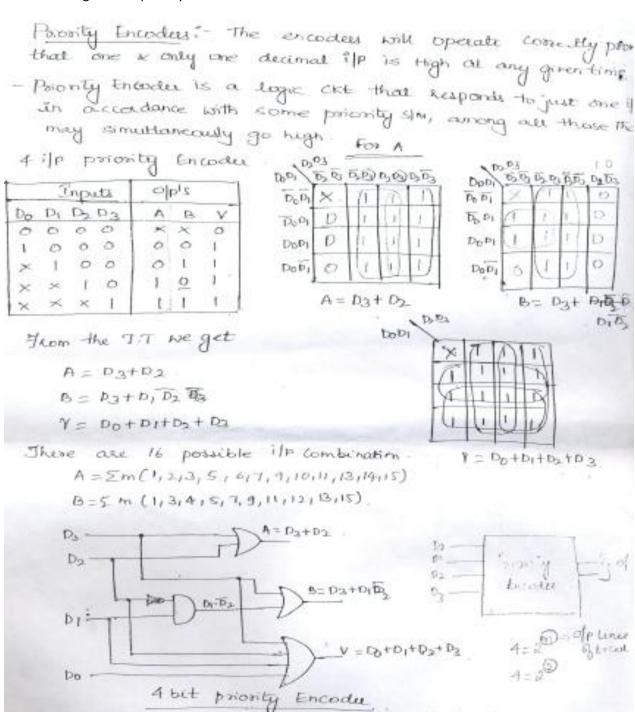


2 B) Find the minimal product using K-map for the Boolean function

 $F(A,B,C,D) = \Sigma m(6,7,9,10,13) + d(1,4,5,11).$

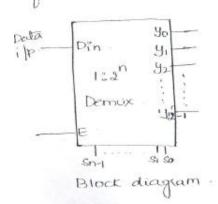


4 (a) Construct a 16:1 multiplexer using 4 to 1 and 2 to 1multiplexers.



(b) Implement the given Boolean function by using 8:1 multiplexer.

$$F(A,B,C,D) = \Sigma m(0,1,3,5,7,11,12,13,14)$$

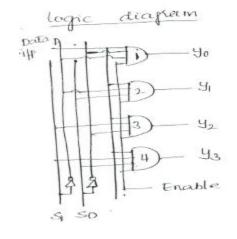

5

6 (a) Explain the working of 1:4 demultiplexers.

Demultiplexes, :- Is a cut that receives a single if & distributes it over several oppis (i.e) 2" possible of lines. (HON).

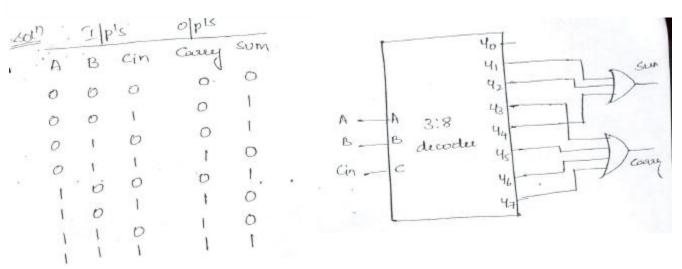
- The selection of specific of line is controlled by the values of n selection lines.

Types of Demutiplexer.


1:4 Demux: The single i/p Vacable

Din has a path to all four o/p's, but

the i/p info is directed to only one of


Bro o/p lines depending on select i/p's.

Enable	SI	So	Din	40	9,	42	43
0	×	×	×	0	0	0	0.
ł.	0	0	0	0	0	0	0.
1	0	0	1 -	1	0	0	0.
1	0	1	0	D	0	0	0.
1	0	1	1	0	1	0	0
1	1	0	0	0	0	0	0.
1	1	0	1	0	0	1	0
1	1	1	0	0	0	0	0.
1	I.	1	1.	0	0	0	1

Select	lines	011	o ,		
\leq_1	SO	90	4,	42	43
0	0	1	0	0	0
0	1	0	1	0	0
1	0	0	0	1	0
1	1 1	0	0	0	1
fre	nc tal	ole 4	4:1	MUX	

(b) Implement a full adder using 3 to 8 decoders

3 (a) Design a 2 bit magnitude comparator using gates.

bite Magnitude Comparated

Let' the two 2 bit nots be A=AIAD & B=BIBD

let' the two 2 bit nots be A=AIAD & B=BIBD

let' the two 2 bit nots be A=AIAD & B=BIBD

let' the two 2 bit nots be A=AIAD & B=BIBD

AI=I & BI=O I then ATB (A)

ATB: G=AIBI+ (AIOBI) AD: BD.

B: AI=O × BI=I then AZB (O1).

3. Up AI=O × BI=I then AZB (O1).

3. Up AI=O × BI=I then AZB (O1).

AI & BI Coincides × AD=O × BD=I then AZB.

Up AI & BI Coincides × AD=O × BD=I then AZB.

E=(AIOBI)(ADOBO).

A	AD	01	Bo	A7B	A=B	ALB
	0	0	0	0	-1	0.
0	0	0		0:	0	
0	0	1	Ö	0	0	'
0	857	1	ĺ	0	0	1.
0	0				D	0.
0	1	0	0	1	1	0.
0	1	0	1	0		1
0	1	1	0	0	0	1 !
0	- 1	1_		10	0:	-
-	0	0	0.	1	0	0.
	0	0	1	t	0	0.
1	0		0	0	1	0.
-1-	0			0	0	1.
T	0	1		+-	0	0.
T	1	0	P		1,000	0.
1	1	0	I		0	
1	1	1	0	1	0	0
1	1		1	0		0

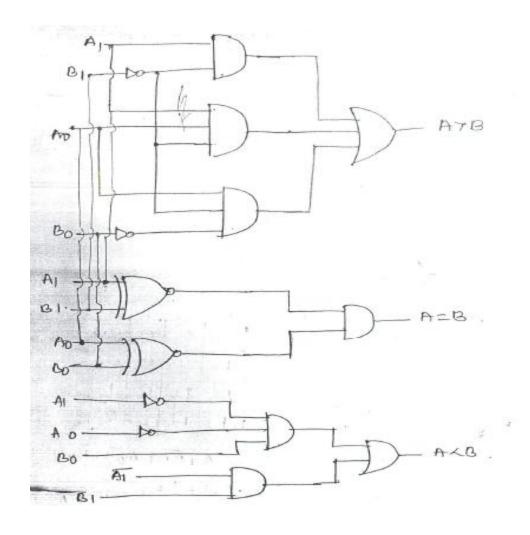
BIB	0	ATI	3.		
AIAO	00	01	11	10	
00	0.	0	0	0.	
01	(1)	0	0	0	
11	D	1	0	1	
10	1		0	D	

ATB = A | B | + A 0 B | B 0 +.

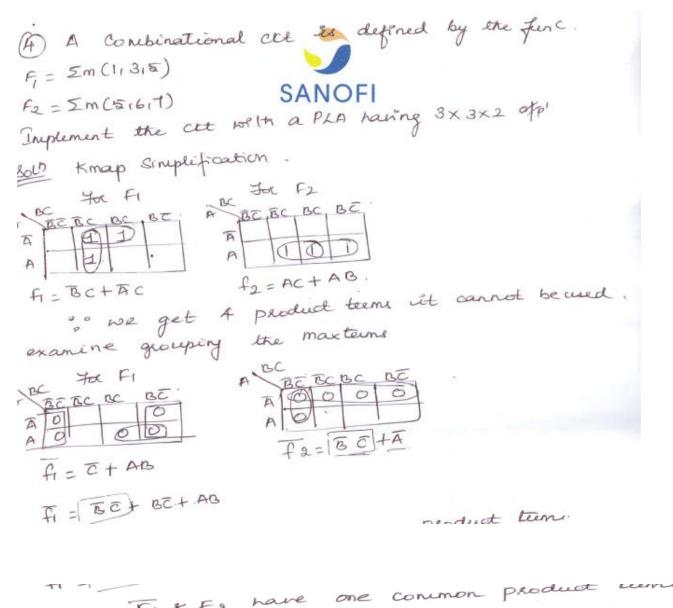
DIE	>b &C	01_	11	10	AZIS
AIAO	0	0	0	b	
00	0	1	0	0	
	0	0	1	O	
10	0	0	0	(1)	

A=B: A, AOB, BO + A, AOB,

+ A, AOB, BO + AOBO) +


A, B, (AOBO + AOBO) +

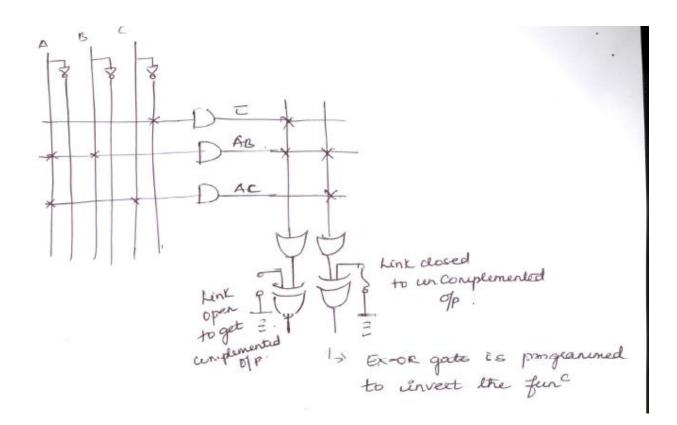
A, B, (AOBO + AOBO) +


(AOBO OBO) (ArOB)

ALAD GIBC	00	01	111/	10	
00	0	U	0	1)	
01	0	O	1.		AI AC
11	0	0	0	6.	AS
10	0	0	M	0.	4

AKB = AIBI + ADBIBO + AI AD BO

7. Implement a PLA circuit having 3 inputs, 3 product terms and two outputs for the given Boolean functions $f1=\Sigma m(1,3,5)$ and $f2=\Sigma m(5,6,7)$.


Fire S Fix F2 have one common product turn having 3 product terms.

P.T ABC FIF2.

ABI 1 - 1 - 1

AC: 1 - 1 - 1

C T

