

			Interna	l Assessment	Test	1 – Sept. 20)18	ACC	REDITED WIT	'H A+ GRADE B	Y NAAC
ib: Stora	ge Are	a Networl				Sub Code:	15CS754	Branch:	ISE	/ CSE	
te: 20-09	9-18	Duration:	90 min's	Max Marks:	50	Sem / Sec:	VI ISE A & B	I SEM / CSE A ,B	& C	OF	BE
		<u>S</u>	CHEME O	F EVALUAT	ION			MA	ARKS	CO	RB
Explain	the arc	hitecture a	nd evolutio	n of storage te	echno	ology with a	neat diagran	n. [10]	CO1	L
	Interna	JBOD	LAN NAS,	rc SAN IP SAN	Iti-Protocol Router						
	Evolut	tion of storag	ge architecture	s	Time						
develop 2. Direc	ed to ac c t-attac r a grou	ldress the hed stora	cost, perfor ge (DAS): '	ndent Disks mance, and av This type of s ster. Storage c	vailab torag	ility require e connects	ements of dat directly to a s	a. server			

- Availability
- Security
- Scalability
- Performance
- Data Integrity
- Capacity
- Manageability

3. (a) Explain disk drive components with suitable diagram.

- <u>*Platter:*</u> A typical HDD consists of one or more flat circular disks called *platters*. The data is recorded on these platters in binary codes (0s and 1s). The set of rotating platters is sealed in a case, called *Head Disk Assembly* (HAD)
- <u>Spindle:</u> A spindle connects all the platters and is connected to a motor. The motor of the spindle rotates with a constant speed
- <u>**Read/Write Head:**</u> Read/Write (R/W) heads, read and write data from or to a platter. Drives have two R/W heads per platter, one for each surface of the platter. The R/W head changes the magnetic polarization on the surface of the platter w
- <u>Actuator Arm Assembly:</u> Each platter has two R/W heads, one for each surface. R/W heads are mounted on the *actuator arm assembly*, which positions the R/W head at the location on the platter where the data needs to be written
- <u>Drive Controller</u>: The controller is a printed circuit board, mounted at the bottom of a disk drive. It consists of a microprocessor, internal memory, circuitry, and firmware. The firmware controls the power to the spindle motor and the speed of the motor

[5]

CO1 L1

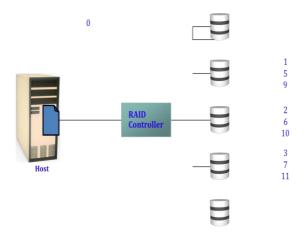
CO1 L2

[10]

(b) Consider a Disk I/O System in which an I/O request arrives at the rate of 80 IOPS.
 [5] CO1 L3 Service time is 6 ms. Compute the following

- (i) Utilization (ii) Total Response Time.
- (iii) Average Queue Size (iv) Time Spent by a request in a queue

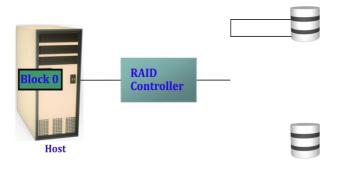
Arrival Rate= a=80 IOPS Average service Time=Rs= 6ms Hence, the utilization of I/O controller (U) is given by: U = a * Rs= 80 * 6 * 10^-3 = 0.48Total Response Time (R) is given by: R = Rs1 - U=61-0.48= 11.538 ms Average queue size=U*U(1-U)=0.48*0.48(1-0.48)= 0.44Thus, the total time spent by a request in a queue = U * R=0.48 * 11.538 =5.538 ms Now if the controller power is doubled, the service time is halved. Consequently, Rs= 3ms in this scenario. Therefore, a=80 IOPS Utilization (U) = a * Rs= 80 * 3 * 10^-3 = 0.24Total Response Time (R) = Rs1–U =31-0.24 =4 msAverage Queue Size = U * U(1-U)


=0.24*0.241-0.24= 0.0757

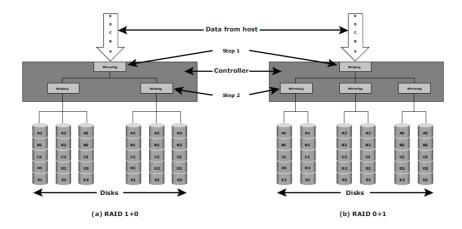
Hence, Time spent by request in a queue = U * R= 0.24 * 4= 0.96ms.

4. Explain the following with appropriate diagrams
(i) RAID 0 (ii) RAID 1 (iii) Nested RAID (iv) Comparison of RAID Levels

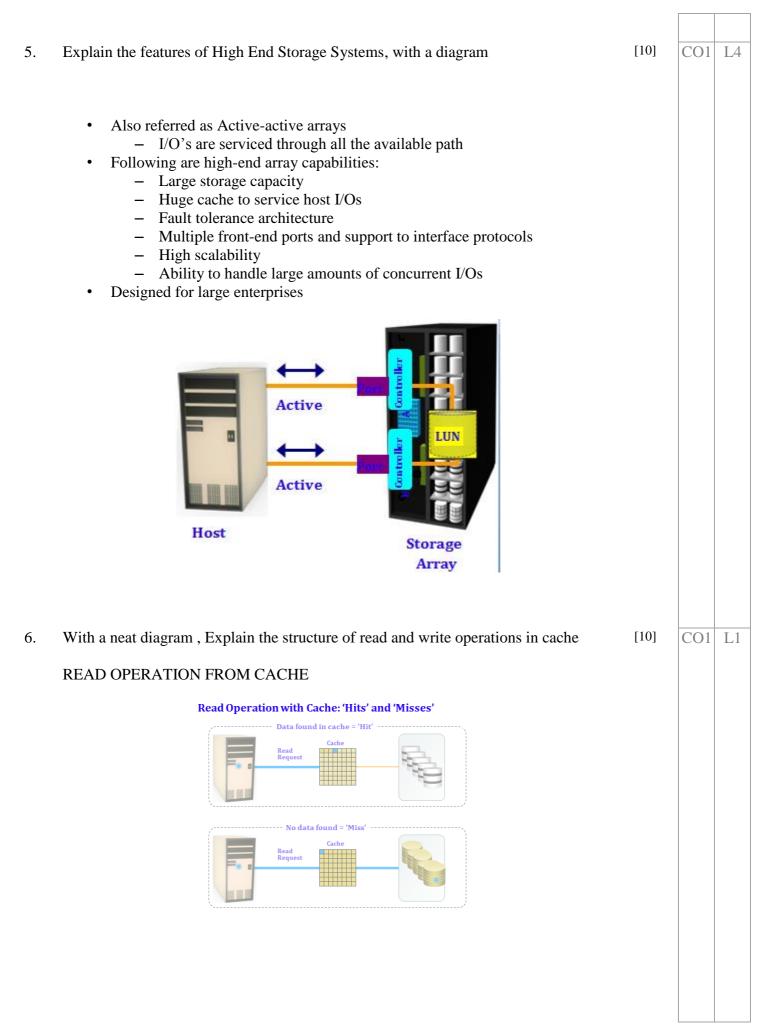
RAID 0


- Data is distributed across the HDDs in the RAID set.
- Allows multiple data to be read or written simultaneously, and therefore improves performance.
- Does not provide data protection and availability in the event of disk failures.

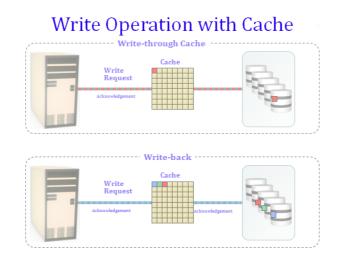
RAID 1


- Data is stored on two different HDDs, yielding two copies of the same data.
 - Provides availability.
- In the event of HDD failure, access to data is still available from the surviving HDD.
- When the failed disk is replaced with a new one, data is automatically copied from the surviving disk to the new disk.
 - Done automatically by RAID the controller.
- Disadvantage: The amount of storage capacity is twice the amount of data stored.
- Mirroring is NOT the same as doing backup!

L1


NESTED RAID

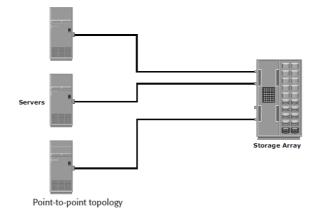
- Combines the performance benefits of RAID 0 with the redundancy benefit of RAID 1.
- RAID 0+1 Mirrored Stripe
 - Data is striped across HDDs, then the entire stripe is mirrored.
 - If one drive fails, the entire stripe is faulted.
 - Rebuild operation requires data to be copied from each disk in the healthy stripe, causing increased load on the surviving disks.
- RAID 1+0 Striped Mirror
 - Data is first mirrored, and then both copies are striped across multiple HDDs.
 - When a drive fails, data is still accessible from its mirror.
 - Rebuild operation only requires data to be copied from the surviving disk into the replacement disk.



COMPARISION OF RAID LEVELS

RAID	Min Disks	Storage Efficiency %	Cost	Read Performance	Write Performance
0	2	100	Low	Very good for both random and sequential read	Very good
1	2	50	High	Good Better than a single disk	Good Slower than a single disk, as every write must be committed to two disks
3	3	(n-1)*100/n where n= number of disks	Moderate	Good for random reads and very good for sequential reads	Poor to fair for small random writes Good for large, sequential writes
5	3	(n-1)*100/n where n= number of disks	Moderate	Very good for random reads Good for sequential reads	Fair for random write Slower due to parity overhead Fair to good for sequential writes
6	4	(n-2)*100/n where n= number of disks	Moderate but more than RAID 5	Very good for random reads Good for sequential reads	Good for small, random writes (has write penalty)
1+0 and 0+1	4	50	High	Very good	Good

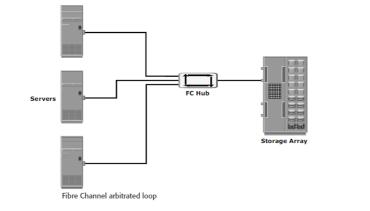
WRITE OPERATION TO CACHE


7. Explain the connectivity options of FC architecture with a neat diagram

The FC architecture supports three basic interconnectivity options: point-to-point, arbitrated loop (FC-AL), and fabric connect.

Point-to-point is the simplest FC configuration — two devices are connected directly to each other, as shown in Figure below.

This configuration provides a dedicated connection for data transmission between nodes. However, the point-to- point configuration offers limited connectivity, as only two devices can communicate with each other at a given time.


Moreover, it cannot be scaled to accommodate a large number of network devices. Standard DAS uses point- to- point connectivity.

In the FC-AL configuration, devices are attached to a shared loop, as shown in Figure below . FC-AL has the characteristics of a token ring topology and a physical star topology. In FC-AL, each device contends with other devices to perform I/O operations.

Devices on the loop must —arbitrate|| to gain control of the loop.At any given time, only one device can perform I/O operations on the loop. As a loop configuration, FC-AL can be implemented without any interconnecting devices by directly connecting one device to another in a ring through cables

[10] CO1 L1

1. FC-AL shares the bandwidth in the loop. Only one device can perform I/O operations at a time. Because each device in a loop has to wait for its turn to process I/O request, the speed of data transmission is low in an FC-AL topology.

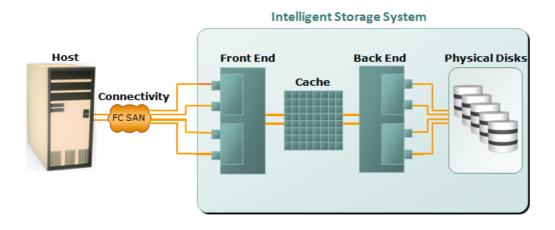
2. FC-AL uses 8-bit addressing. It can support up to 127 devices on a loop.

3. Adding or removing a device results in loop re-initialization, which can cause a momentary pause in loop traffic.

8. With a neat diagram, Explain the components of Intelligent Storage Systems (ISS)

L1

[10]


Intelligent Storage Systems are RAID arrays that are:

- Highly optimized for I/O processing
- Have large amounts of cache for improving I/O performance
- Have operating environments that provide:
 - Intelligence for managing cache
 - Array resource allocation
 - Connectivity for heterogeneous hosts
 - Advanced array based local and remote replication options

Intelligent storage system provides several benefits over a collection of disks in an array (JBOD) or even a RAID arrays:

- Increased capacity
- Improved performance
- Easier data management
- Improved data availability and protection
- Enhanced Business Continuity support
- Improved security and access control

Components of ISS

