USN §
SCHEME & SOLUTIONS
Internal Assessment Test 1 — Sept. 2018
Sub: | Computer Networks Sub Code: | 15CS52 ‘ Branch: ‘ CSE
Date: | 07/09/2018 | Duration: | 90 min’s | Max Marks: |50 | Sem/ Sec: V/ABC OBE
Answer any FIVE FULL Questions | MARKS [CO [RBT
Q1. Explain the different types of Network Application Architectures. [6+5] CO1 L2

QL.

Explain the different types of Network Application Architectures.

Two different types : Client-Server and Peer to Peer [5+5]

Client-Server:

@ In client-server architecture, there is an always-on host, called the server, wl
services when it receives requests from many other hosts, called clients.

@ Example: In Web application Web server services requests from browsers ri
client hosts. When a Web server receives a request for an object from a client h
responds by sending the requested object to the client host.

@ In client-server architecture, clients do not directly communicate with each
@ The server has a fixed, well-known address, called an IP address. Because tl
a fixed, well-known address, and because the server is always on, a client can a
contact the server by sending a packet to the server’s IP address.

@ Some of the better-known applications with a client-server architecture incl

FTP, Telnet, and e-mail.
\ /

Cllent 9

Client
Peer to Peer Architecture:
@ In a P2P architecture, there is minimal dependence on dedicated servers in ¢
@ The application employs direct communication between pairs of intermitten
hosts, called peers.
@ The peers are not owned by the service provider, but are instead desktops ar
CN-Question Bank
controlled by users, with most of the peers residing in homes, universities, and «
@ Many of today’s most popular and traffic-intensive applications are based o
architectures. These applications include file sharing (e.g., BitTorrent), Internet
Telephony (e.g., Skype), and IPTV (e.g., Kankan and PPstream).
@ Features:
Self-scalability:
For example, in a P2P file-sharing application, although each peer generates wc
requesting files, each peer also adds service capacity to the system by distributil
other peers.
Cost effective:

P2P architectures are also cost effective, since they normally don’t require signi
server infrastructure and server bandwidth

Q2. With examples, explain HTTP request and response message formats. [6+5] CO2 L2

Request Header: [5 Marks]

weaioe —f reves [o]_0m o] e []]

e oo [5] o [a]

Haader lines— & =2

v v [e [o]

Biank iino rvl " l

Entity body——

Figure 1.5: General format of an HTTP request-message

= An example of request-message is as follows:
[GET /somedir/page.htmi HTTP/1.1
Host: www.someschool.edu
Connection: close
User-agent: Mozilla/5.0
Accept-language: eng

* The request-message contains 3 sections (Figure 1.5):

1) Reguest-line

2) Header-line and

3) Carriage return.
» The first line of message is called the request-line. The subsequent lines are called the header-lines.
= The request-line contains 3 fields. The meaning of the fields is as follows:

1) Method

> "GET": This methocd is used when the browser requests an object from the server.
2) URL

> "/somedir/page.htmi”: This is the object requestec by the browser.

3) Vversion

> "HTTP/1.1"™: This is version used by the browser.
* The request-message contains 4 header-lines. The meaning of the header-lines is as follows:
1) "Host: www.someschool.edu” specifies the host on which the object resides.
2) "Connection: close” means requesting 2 non-persistent connection.
3) "User-agent:Mozilla/5.0" means the browser used is the Firefox.
4) "Accept-language:eng” means English is the preferred language.
» The methoc field can take following values: GET, POST, HEAD, PUT and DELETE.
1) GET is used when the browser requests an object from the server.
2) POST is used when the user fills out a form & sends to the server.
3) HEAD is identical to GET except the server must not returm a message-body in the response.
4) PUT Is used to upload objects to servers.
5) DELETE allows an application to delete an object on a server.

Response Header: [5 Marks]

Statws line——— wyenion |sp| statwscode |p| pheae |cr|ir

neaces tekgnane [sp| vae ||

4

e
T

H2aoor Enes —i

hoador tiidmama: [sp| value |or| if

Blank %ne ol

Entity body—eef

Figure 1.5: General format of an HTTP response-message

* An example of respcnse-message is as follows:

HTTP/1.1 200 OK

Connection; close

Date: Tue, 09 Aug 2011 15:44:04 GMT

Server: Apache/2.2.3 (Cent0S)

Last-Modified: Tue, 09 Aug 2011 15:11:03 GMT
Content-Length: 6821

Content-Type: text/html

(data data data data data ...)

» The response-message contains 3 sactions (Flgure 1.6):
1) Status line
2) Header-lines and
3) Data (Entity body).
» The status line contains 3 fields:
1) Protocol version
2) Status-code and
3) Status message.
= Some comman status-codes and associated messages include:
1) 200 OK: Standard response for successful HTTP requests.
2) 400 Bad Request: The server cannot process the request due to a client error.
3) 404 Not Found: The requested resource cannot be found.
= The meaning of the Status line is as follows:

"MTTP/1.1 200 OK": This line indicates the server is using HTTP/1.1 & that everything is OK.
= The response-message contains 6 header-lines. The meaning of the header-lines is as follows:
1) Connecticn: This line indicates browser requesting 2 non-persistent connection.

2) Date: This line indicates the time & date when the response was sent by the server.
3) Server: This line indicates that the message was generated by an Apache Web-server.
4) Last-Modified: This line indicates the tme & date when the cbject was last modified.
5) Content-Length: This line indicates the number of bytes in the sent-object.

6) Content-Type: This line indicates that the object in the entity body is HTML text.

Q3. Write short notes on a) Cookies b) Web Caching [5+5] CO2
Cookies — 5 Marks
Web Caching- 5 Marks

1.2.4 User-Server Interaction: Cookles
» Cookies refer 1o a small text file created by a Web-Ste that is stored in the user's computer,
= Cookies are stored elther temporarily for that session only or permanently on the harc disk,
» Cookies allow Web-sites to keep track of users,
» Cookie technology has four components:

1) A ccokie header-line in the HTTP response-message,

2) A cookie header-line in the HTTP request-message.

3) A cookie file kept on the user’s end-system and managed by the user's browser.

4) A back-end databasce ot the Web-site.

Chont host Sorver host

eday 8734
— W Lreates
1D 1675 for wsar
entry in backend
8 aDxE0
amazon. 1618 -
oboy: 734 e
v COCKISEECIMNC aep
ction

W

Ommeilator-r -

/L “:;ll My Cgue
8/ =467 T g
amazon: 1678
ahay: 8124 g = Cokiespecitic
p— =
y,/

3

Trme Time

Koy

8 Cochm fim

Figure 1.7: Keeping user state with cookies

» Here is how it works (Figura 1.7):
1) When a user first time visits a site, the server
—s creates a unique identification number (1678) and
- creates an entry in its back-end database by the dentification number.
1) The server then respands to user's browser.
» HTTP response includes Set-cookie: header which contains the identification number (1678)
3) The browser then stares the identification number into the cookie-fie.
4) Each time the user requests a Web-page, the browser
—» extracts the identification number from the cookie file, and
—+ puts the identificaticn number in the HTTP request.
5) In this manner, the server is able to track user's activity at the web-ste.

1.2.5 Web Caching

* A 'Web-cache is a network entity that satisfies HTTP requests on the behall of an original Web-server.

* The Web-cache hes disk-storage.
« The disk-storage contains copies of recently requestad-abjects.

Proxy / -
\\\sem« Pl | |
Chont i ./ Ovigin

SN

Orign
wiver

Figure 1.8: Qlents requesting abjects through a3 \WWebd-cacha (or Proxy Server)

« Here is how it works (Figure 1.8):
1) The usar's HTTP requasts are first directed to the web-cache.
2) If the cache has the object requested, the cache returns the requestec-object to the client,
3) If the cache does not have the reguested-object, then the cache
-+ connects to the original server and
~+ asks for the object.
4) When the cache receives the object, the cache
-+ SLOfes @ copy of the objact in local-storage and
-+ s=nds a copy of the object to the client.
* A cache acts as both a sarver and a dient at the same time.
1) The cache acts as a sarver when the cache
—» recelves requests from a browser anc
—» sends responses to the browser.
2) The cache acts as a dient when the cache
» requests to an original servar and
—» recelves responses from the orligin server,
« Agvantages of caching:
1) To reduce response-time for client-request.
2) To reduce traffic on an institution’s accessdink to the Internet.
31 Tn redurce Weh-rrafic in the Intemet.

Q4. a) Describe the iterative and recursive services for query resolution provided by DNS.
Iterative Queries:

Root DMS server

e,
. n

_ocal DMNS server TLD DMNS server
dns .poly.eda

i

Authoritative DN5S server

Requesting host dns .umass .edua
cig.poly.edua

gaia.cs.umass .edu

Here DNS query is sent to local DNS server then to root server, then to TLD
server and finally to authoritative DNS server. DNS response arrives in the

reverse order.

[3+3]

Co2

L2
L2

Recursive Queries:

Root DNS server
=

I/é/ L‘!—
</

y
|
’ N\
()
o/

/>_.
{
%

Local DNS server TLD DNS server
dns .poly.edu

; E
!} Authoritative DNS server

dns.umass.edu
—

Requesting host

cis.poly.edu

gaia.cs .umass .edu
Here DNS query will be sent to Local DNS server, then to root server. Root server sends the IP
address of TLD server. Now local DNS server sends query to TLD DNS server. TLD DNS
server sends the IP address of authoritative DNS server to local DNS server. Now Local DNS
server sends query to authoritative DNS server. Authoritative DNS server sends the IP address of
host to local DNS server. Local DNS server sends it to the host.

b) What is DHT? Explain the working of DHT. [1+3]
Distributed Hash Tables

P2P version of this database will store the (key, value) pairs over millions of peers.

1 In the P2P system, each peer will only hold a small subset of the totality of the (key,
value) pairs. We’ll allow any peer to query the distributed database with a particular key.
The distributed database will then locate the peers that have the corresponding (key, value)
pairs and return the key-value pairs to the querying peer.

1 Any peer will also be allowed to insert new key-value pairs into the database. Such a
distributed database is referred to as a distributed hash table (DHT).

1 One naive approach to building a DHT is to randomly scatter the (key, value) pairs
across all the peers and have each peer maintain a list of the IP addresses of all
participating peers. In this design, the querying peer sends its query to all other peers, and
the peers containing the (key, value) pairs that match the key can respond with their
matching pairs.

1 Such an approach is completely unscalable as it would require each peer to know about
all other peers and have each query sent to all peers.

1 An elegant approach to designing a DHT is to first assign an identifier to each peer,
where each identifier is an integer in the range [0, 2n-1] for some fixed n.

] This also require each key to be an integer in the same range.

] To create integers out of such keys, we will use a hash function that maps each key
(e.g., social security number) to an integer in the range [0, 2n-1].

Problem of storing the (key, value) pairs in the DHT:

1 The central issue here is defining a rule for assigning keys to peers. Given that each peer
has an integer identifier and that each key is also an integer in the same range, a natural

Q5.

approach is to assign each (key, value) pair to the peer whose identifier is the closest to the

key.

Implement a network application for client server communication using sockets over TCP.

i

from socket import *

serverPort = 12000

serversocket = socket(AF INET SOCE. STREAN)
serversocket bind((* serverPort))
serversocket.listen(1)

print “The server is ready to receive’

while 1:

comnectionSocket, addr = serverSocket. accept()
sentence = comnectionSocket recw1024)
capitalizedSentence = sentence upper()
connectionSocket. send(capitalizedSentence)
comectionSocket close()

I'CPClient.py

from socket import *

serverName = ‘servername’

serverPort = 12000

clientSocket = socket(AF INET, SOCE. STREAM)
clientSocket. connect({{serverName serverPort))
sentence = raw_input(Input lowercase sentence:’)
clientSocket send(sentence)

modifiedSentence = clientSocket.recvi1024)

print ‘From Server:”, modifiedSentence

clientSocket close()

[5+5]

COo3

L3

Q6.

a) Explain the connection-oriented multiplexing and de-multiplexing. [6] Cco2
2.2.3 Connection Oriented Multiplexing and Demultiplexing
= Each TCP connection has exactly 2 end-points. (Figure 2.4).
= Thus, 2 amving TCP segments with different source-port-nos will be directed to 2 different sockets,
even if they have the same destination-port-no.
= A TCP socket 15 identified by a four-tuple:
1) Source IP address
2) Source-port-no
3) Destination IP address &
4) Destination-port-no.

__‘__,_,ﬂlﬂl'lt pIrooeis

i i }__5.,-—'-"'" Socket

Host A Server B

g} ‘ roseport et poc
\ ‘? i JJ
3

=%
SOUICE DPOTT. dest, pore:
A48 10957

Figure 2.4: The inversion of socurce and destination-port-nos

= The server-host may support many simultanecus connection-sockets.
= Each socket will be

— attached to a process.

— Identified by its own four tuple.

= When a segment armives at the host, all 4 fields are used to direct the segment to the appropriate
socket. (i.e. Demultiplexing).

b) With an example, demonstrate how UDP checksum is generated and how is it used to detect the
transmission errors at the receiver end? (Note: Take any four 16 bit data blocks as input) [4]

Stepl: Add all the data elements using binary addition (Modulo-2 addition). If you get extra bit

wrap it.

0110011001100000
0101010101010101
1000111100001100

The sum of first two of these 16-bit words is

O110011001100000
0101010101010101
1011101110110101

Adding the third word to the above sum gives

1011101110110101
1000111100001100
0100101011000010

Step 2: Take 1s complement of the result.
The 1s complement is obtained by converting all the Os to 1s and converting all the 1s to Os,

Thus the 1s complement of the sum 0100101011000010 is 1011010100111101, which becomes

the checksum.

L2

Step 3: Data along with checksum is transmitted to receiver.
Step 4:at the receiver side add all the data and chiecksum usig binary addition. Wrap the extra
bit and take ls complement of the result. This will be the checksum. If checksum is all 0°s

receiver has received error free data otherwise it has received corrupted data.

Q7. @) lllustrate rdt 2.1 (sender and receiver) with a neat labeled FSM diagram. [4+2] coz

Sender:

rdt_send(data)

sndpkt=make_pkt (0,data,checksum)
udt_send(sndpkt)

rdt_rcv|rcvpkt)&k
T {corrupt (revpkt) | |

ey isNAK (rcvpkt))
Wait for Wait for udt_send (sndpkt)
call 0 from ACK or
above NAK 0
rdt_rcv(rcvpkt) rdt_rcv(rcvpkt)
&& notcorrupt | revpkt), && notcorrupt(rovpkt)
&k isACK(revpkt) &b isACK(rovpkt)
A A
Wait for Wait for
ACK or call 1 from
NAK 1 above
rdt_rev(revpkt) &
{corrupt (revpkt) | |
isMAE(|rcvpkt))
udt_send (sndpkt) rdt_send(data)

sndpkt=make_pkt(l,data,checksum)
udt_send(sndpkt)

Receiver:

rdt_rcv({rcvpkt)&& notcorrupt(rcvpkt)
&6 has_seql(rcvpkt)

extract(rcvpkt,data)
deliver datadata)
sndpkt=make_pkt (ACK, checksum)

rdt_rcwv(rcvpkt) udt_send(sndpkt) rdt_rcv(rcvpkt) && corrupt (rcvpkt |

&6 corrupt (revpkt) .

i sndpkt=make pkt(NAK,checksum)
sndpkt=make pkt(HAK, checksum) \‘ wdt_send(sndpkt)

udt_send(sndpkt)
Wait for Wait for
1 from

0 from
rdt_rcv(rcvpkt) &k notcorrupt below below
(rcvpkt) &&has_segl{rcvpkt) O 0 rdt_rcv(rcvpkt)&k notcorrupt

(rcvpkt)&thas_seqgl{rcvpkt)
sndpkt=make_ pkt(ACK, checksum) sndpkt=make_pkt(ACK,checksum)
udt_ send{sndpkt) udt_send(sndpkt)

rdt_rev(revpkt) &b notcorrupt(revpkt)
&& has_segl (rcvpkt)

extract(revpkt,data)

deliver data(data)
nndpkr_q_n.ake_pi:t {ACK, checksum)
udt_send(sndpkt)

b) With a neat diagram, describe TCP Segment Structure. [4]

L2

32 bits
1

Source port # Dest port #

Seguence number

Acknowledgment number

Header

-
length Unused g é E - E E Recene window

Internet checksum Urgent data pointer

Options
Data

e The TCP segment consists of header fields and a data field.

e The data field contains a chunk of application data.

e The minimum length of TCP header 1s 20 bytes.

e The header includes source and destination port numbers. which are used for
multiplexing/demultiplexing data from/to upper-layer applications.

e The header includes a checksum field for error detection.

The 32-bit sequence number field and the 32-bit acknowledgment number field
are used by the TCP sender and receiver in implementing a reliable data transfer
SEIVice.

The 16-bit receive window field is used for flow control It is used to indicate the
mumber of bytes that a receiver is willing fo accept.

The 4-bit header lengih field specifies the length of the TCP header in 32-bit words.
The TCP header can be of variable length due to the TCP options field.

The optional and variable-length options field is used when a sender and receiver
negotiate the maximum segment size (MSS) or as a window scaling factor for use in
high-speed networks.

The flag field contains 6 bits.

The ACK bit is used to indicate that the value carried in the acknowledgment field is
valid; that is. the segment contams an acknowledgment for a segment that has been
successfully recerved.

The RST, SYIN, and FIN bits are used for connection setup and teardown.

Setting the PSH bit mdicates that the receiver should pass the data to the upper layer
immediatelv.

Finally, the URG bit 15 used to indicate that there is data in this segment that the
sending-side upper-laver entity has marked as “urgent.”

The location of the last byte of this urgent data is indicated by the 16-bit urgent data
pointer field. TCP omst inform the receiving- side upper-layer entity when vrgent
data exists and pass it a pointer to the end of the ureent data.

8. Explain Selective Repeat (SR) Protocol. [10]

2.4.4 Selective Repeat (SR)

Limitation of GBN: GBN itself suffers from performance problems. In particular, when the
window size and bandwidth-delay product are both large, many packets can be i the
pipeline. A single packet error can thus cause GBN to retransmit a large mumber of packets.
As the name suggests, selective-repeat protocels avoid wEmecessary, retransmissions by
having the sender retransmit only those packets that it suspects were received in error (that is,
were lost or corrupted) at the receiver.

This individual as needed. refransmission will require that the recerver mdividually
acknowledge comrectly received packets.

A window size of W will again be used to limut the number of cutstanding, wnacknowledzed
packets in the pipelme.

The SE recetver will acknowledge aicomectly recerved packet whether or not 1t 1s m order.
Out-of-order packets are buffered until amy missmg packets (that is, packets with lower
sequence mimbers) are received, at which point a batch of packets can be delivered m order
te the upper layer.

aend_bans mmscbm g n L

Ky

DERNNRCORNDEADOODEONOO00000 Mé O

H sord, not Kot Lmabie
| WWindowr size vl AvCE'd D
H 1)

. Sandar viaw of mquanr.a [T

row D e

Ky

[IDDDDDDDDT]IIIDDDDDDDDDD,DDD B Dzzr

T
S inedeww size D o vty i |:|Nu-. Lonah o
&

b Recahver vies of segusnce mumbsrs

1. Data received from above, When data is received from above, the SR sender

checks the next available sequence number for the packet. If the sequence
number is within the sender’s window, the data s packetized and sent: other-
wise it is either buffered or returned to the upper layer for later transmission,
as in GBN.

. Timecwr. Timers are again used o protect against lost packets. However, each

packet must now have its own logical timer, since only a single packet will
be transmutted on ttmeout. A single hardware timer can be used to mumic the
operation of multiple logical timers [Varghase 1997].

- ACK received. If an ACK 15 received, the SR sender marks that packet as

having been received, provided it is in the window, If the packet's sequence
number is equal to send_base. the window base is moved forward to the
unacknowledged packet with the smallest sequence number. If the window
moves and there are untransmitted packets with sequence numbers that now
fall within the window, these packets are transmitted.,

€0 mrmmdar mirne. | e

Sender Receiver

pktld asnt
0123458 7TES9

pktd revd, delivered, ACFK0 sent
01234567829

pktl sent
0123456 7TET

pktl rewd, delivered, ACKl asnt
0123456 7E3

—pktl sent
0123456783

pktd sent, window full
01234567889

pkti revd, bufferaed, ACEI sent

ACED rewd, pktd sent 012345678283

0123454676889

pktd reowd, buffered, BCF4 sent
0123456 78%4

ACEl rowd, pktS sent
0123 4567879

pkt5 revd; buffered, BCES senk
D123 4567829

[pkt2 TIMEOUT, pkel
reéegent

912345467889

pkt? sovd, pltl pked pked,pEes
delivered, ACKZ sent

012345678285

ACFE3 revd, nothing sent
012345467823

1. Packer with sequence number in [rov_base, rev_base+N-1] iscor
recily recenved. In this case, the received packet falls within the receiver’s win-
dow and a selective ACK packet 15 returned to the sender. If the packet was not
previously received, 1t 1s buffered. If this packet has a sequence nomber equal to
the basa of the receive window (rev_base in Figure 3.22), then this packet.
and any previously buffered and consecutively numbered (beginning with
rov_ base) packets are delivered to the upper layer. The receive window is
then moved forward by the number of packets delivered to the upper laver. As
an example, consider Figure 3.26. When a packet with a sequence number of
rov_base—2 is received. it and packets 3. 4, and 5 can be delivered to the
upper laver.

2. Packer with sequence number in [rev _base-M, rov base-1] iscor-
recily received. In this case, an ACK must be genermaied, even though this s a
packet that the receiver has previously acknowledged.

3. Ctherwizse, [gnore the packet.

5K receiver events and actions

