

	First Internal Test-Answer Key	0.1	150054
Sub: Date:	Automata Theory and Computability08 / 09 / 2018Duration:90 minsMax Marks:50Se	m: V Branch:	15CS54 ISE
Jaie.	Answer ALL Questions		1512
			OBE
		Marl	
1 (a)	List any four applications of Automata Theory.	[04*1	
	 Languages enable Machine/machine and person/machine communication Network protocols, HTML, Semantic Web (RDF,OWL), Music 	mark	S
	 Programming languages, compilers, & context-free grammars. FSMs (finite state machines) for parity checkers, vending machines, comprotocols, & building security devices. 	nunication	
	• Interactive games as nondeterministic FSMs.		
(b)	Find the following Languages are closed or not. Give the reason if it is N	Io. [02 marl	as for CO1 L
	(i) The odd length strings over the alphabet {a, b} under Kleene star.Not closed because, if two odd length strings are concatenated, the result is of even		n marks
	length. The closure is the set of all nonempty strings drawn from the alphabet {a	b}.	CO1 L
	(ii) $L = \{w \in \{a, b\}^*: w \text{ ends in } a\}$ under concatenation. Closed.		
c)	Explain with examples about the concatenation of languages.	[02	1
	If L_1 and L_2 are languages over Σ :		-
	$L_1L_2 = \{ w : \exists s \in L_1 \& \exists t \in L_2 \ni w = st \}$	Definiti	
	Examples: $L_1 = \{ cat, dog \}$	mar Example:	
	$L_2 = \{apple, pear\}$	2	
	$L_1 L_2 = \{ \text{catapple, catpear, dogapple, dogpear} \}$		
	$L_2 L_1 = \{applecat, appledog, pearcat, peardog\}$		
(a)		swer [04	CO1 I
(a)	For each of the following statements say it is true or false. Prove your an	$f \emptyset$). Answer:	l mark
(a)	For each of the following statements say it is true or false. Prove your ar (i) $(\emptyset \cup \emptyset^*) \cap (\neg \emptyset - (\emptyset \emptyset^*)) = \emptyset$ (where $\neg \emptyset$ is the complement of	f Ø). Answer: Derivat	l mark ion:1
(a)	 For each of the following statements say it is true or false. Prove your art (i) (Ø ∪ Ø*) ∩ (¬Ø − (ØØ*)) = Ø (where ¬Ø is the complement of False. The left hand side equals {ε}, which is not equal to Ø. 	$f \emptyset$). Answer:	l mark ion:1
(a)	 For each of the following statements say it is true or false. Prove your art (i) (Ø ∪ Ø*) ∩ (¬Ø − (ØØ*)) = Ø (where ¬Ø is the complement of False. The left hand side equals {ε}, which is not equal to Ø. Ø={}, Ø*={ε}, 	f Ø). Answer: Derivat	l mark ion:1
2 (a)	For each of the following statements say it is true or false. Prove your ar (i) $(\emptyset \cup \emptyset^*) \cap (\neg \emptyset - (\emptyset \emptyset^*)) = \emptyset$ (where $\neg \emptyset$ is the complement of False. The left hand side equals $\{\varepsilon\}$, which is not equal to \emptyset . $\emptyset = \{\}, \emptyset^* = \{\varepsilon\},$ $(\emptyset \cup \emptyset^*) = \{\varepsilon\},$	f Ø). Answer: Derivat	l mark ion:1
2 (a)	For each of the following statements say it is true or false. Prove your ar (i) $(\emptyset \cup \emptyset^*) \cap (\neg \emptyset - (\emptyset \emptyset^*)) = \emptyset$ (where $\neg \emptyset$ is the complement of False. The left hand side equals $\{\varepsilon\}$, which is not equal to \emptyset . $\emptyset = \{\}, \emptyset^* = \{\varepsilon\},$ $(\emptyset \cup \emptyset^*) = \{\varepsilon\},$ $\neg \emptyset = \Sigma^*,$	f Ø). Answer: Derivat	l mark ion:1
2 (a)	For each of the following statements say it is true or false. Prove your ar (i) $(\emptyset \cup \emptyset^*) \cap (\neg \emptyset - (\emptyset \emptyset^*)) = \emptyset$ (where $\neg \emptyset$ is the complement of False. The left hand side equals $\{\varepsilon\}$, which is not equal to \emptyset . $\emptyset = \{\}, \emptyset^* = \{\varepsilon\},$ $(\emptyset \cup \emptyset^*) = \{\varepsilon\},$ $\neg \emptyset = \Sigma^*,$ $\emptyset \emptyset^* = \emptyset$	f Ø). Answer: Derivat	l mark ion:1
(a)	For each of the following statements say it is true or false. Prove your ar (i) $(\emptyset \cup \emptyset^*) \cap (\neg \emptyset - (\emptyset \emptyset^*)) = \emptyset$ (where $\neg \emptyset$ is the complement of False. The left hand side equals $\{\varepsilon\}$, which is not equal to \emptyset . $\emptyset = \{\}, \emptyset^* = \{\varepsilon\},$ $(\emptyset \cup \emptyset^*) = \{\varepsilon\},$ $\neg \emptyset = \Sigma^*,$ $\emptyset \emptyset^* = \emptyset$ $(\neg \emptyset - (\emptyset \emptyset^*)) = \{\varepsilon\},$	f Ø). Answer: Derivat	l mark ion:1
(a)	For each of the following statements say it is true or false. Prove your ar (i) $(\emptyset \cup \emptyset^*) \cap (\neg \emptyset - (\emptyset \emptyset^*)) = \emptyset$ (where $\neg \emptyset$ is the complement of False. The left hand side equals $\{\varepsilon\}$, which is not equal to \emptyset . $\emptyset = \{\}, \emptyset^* = \{\varepsilon\},$ $(\emptyset \cup \emptyset^*) = \{\varepsilon\},$ $\neg \emptyset = \Sigma^*,$ $\emptyset \emptyset^* = \emptyset$ $(\neg \emptyset - (\emptyset \emptyset^*)) = \{\varepsilon\},$ $(\emptyset \cup \emptyset^*) \cap (\neg \emptyset - (\emptyset \emptyset^*)) = \{\varepsilon\}$ not equal to \emptyset	f Ø). Answer: Derivat	l mark ion:1
2 (a)	For each of the following statements say it is true or false. Prove your art (i) $(\emptyset \cup \emptyset^*) \cap (\neg \emptyset - (\emptyset \emptyset^*)) = \emptyset$ (where $\neg \emptyset$ is the complement of False. The left hand side equals $\{\varepsilon\}$, which is not equal to \emptyset . $\emptyset = \{\}, \emptyset^* = \{\varepsilon\},$ $(\emptyset \cup \emptyset^*) = \{\varepsilon\},$ $\neg \emptyset = \Sigma^*,$ $\emptyset \emptyset^* = \emptyset$ $(\neg \emptyset - (\emptyset \emptyset^*)) = \{\varepsilon\},$ $(\emptyset \cup \emptyset^*) \cap (\neg \emptyset - (\emptyset \emptyset^*)) = \{\varepsilon\}$ not equal to \emptyset (ii) $\forall L (\emptyset L^* = \{\varepsilon\}).$	f Ø). Answer: Derivat	l mark ion:1
	For each of the following statements say it is true or false. Prove your ar (i) $(\emptyset \cup \emptyset^*) \cap (\neg \emptyset - (\emptyset \emptyset^*)) = \emptyset$ (where $\neg \emptyset$ is the complement of False. The left hand side equals $\{\varepsilon\}$, which is not equal to \emptyset . $\emptyset = \{\}, \emptyset^* = \{\varepsilon\},$ $(\emptyset \cup \emptyset^*) = \{\varepsilon\},$ $\neg \emptyset = \Sigma^*,$ $\emptyset \emptyset^* = \emptyset$ $(\neg \emptyset - (\emptyset \emptyset^*)) = \{\varepsilon\},$ $(\emptyset \cup \emptyset^*) \cap (\neg \emptyset - (\emptyset \emptyset^*)) = \{\varepsilon\}$ not equal to \emptyset (ii) $\forall L (\emptyset L^* = \{\varepsilon\}).$ False. For any L, and thus for any L*, $\emptyset L = \emptyset$.	f Ø). Answer: Derivati mar	Í mark ion:1 k
2 (a) (b)	For each of the following statements say it is true or false. Prove your ar (i) $(\emptyset \cup \emptyset^*) \cap (\neg \emptyset - (\emptyset \emptyset^*)) = \emptyset$ (where $\neg \emptyset$ is the complement of False. The left hand side equals $\{\varepsilon\}$, which is not equal to \emptyset . $\emptyset = \{\}, \emptyset^* = \{\varepsilon\},$ $(\emptyset \cup \emptyset^*) = \{\varepsilon\},$ $(\emptyset \cup \emptyset^*) = \{\varepsilon\},$ $(\emptyset \cup \emptyset^*) \cap (\neg \emptyset - (\emptyset \emptyset^*)) = \{\varepsilon\}$ not equal to \emptyset (ii) $\forall L (\emptyset L^* = \{\varepsilon\}).$ False. For any L, and thus for any L*, $\emptyset L = \emptyset$. Compare DFSM with NDFSM	f Ø). Answer: Derivat	Í mark ion:1 k
2 (a) (b)	For each of the following statements say it is true or false. Prove your ar (i) $(\emptyset \cup \emptyset^*) \cap (\neg \emptyset - (\emptyset \emptyset^*)) = \emptyset$ (where $\neg \emptyset$ is the complement of False. The left hand side equals $\{\varepsilon\}$, which is not equal to \emptyset . $\emptyset = \{\}, \emptyset^* = \{\varepsilon\},$ $(\emptyset \cup \emptyset^*) = \{\varepsilon\},$ $\neg \emptyset = \Sigma^*,$ $\emptyset \emptyset^* = \emptyset$ $(\neg \emptyset - (\emptyset \emptyset^*)) = \{\varepsilon\},$ $(\emptyset \cup \emptyset^*) \cap (\neg \emptyset - (\emptyset \emptyset^*)) = \{\varepsilon\}$ not equal to \emptyset (ii) $\forall L (\emptyset L^* = \{\varepsilon\}).$ False. For any L, and thus for any L*, $\emptyset L = \emptyset$.	f Ø). Answer: Derivati mar	I mark ion:1 k] CO2 L CO1 L

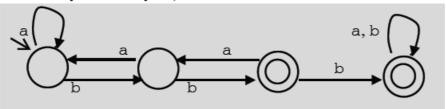
ε transition is not here	ε transition is there
Transition function $KX\Sigma \rightarrow K$ states	Transition relation $KX\Sigma \rightarrow 2^{K}$ states
Single path for a string to accept	There exists multiple path for a string. Any path leads to accept is accepted by NDFSM

Explain Non determinism with real time example.

(c)

Travel plan from source destination by multiple ways: explanation should be given.

3 (a) Design DFSM for $L = \{w \in \{a, b\}^* : w \text{ contains at least two b's that are not immediately followed by a's}\}.$



(b) Design NDFSM for the L={ $w \in \{0, 1\}^*$: w corresponds to the binary encoding of a positive integer that is divisible by 16 or is odd}.

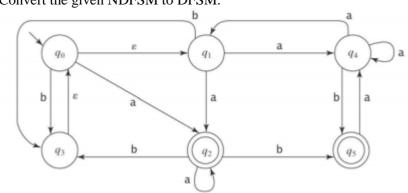
States correct: 2 marks Transition Correct: 3 marks

0

[05]

4 (a) Convert the given NDFSM to DFSM.

0,1



[10] CO2 L3

Epsilon closure for all states=3 marks Transition function= 4 marks Final correct DFSM=3 marks

[02]

[05] CO3 L2

CO3 L2

States correct: 2 marks Transition Correct: 3 marks

S	eps(s)
q_0	$\{q_0, q_1\}$
q_1	$\{q_1\}$
q_2	$\{q_2\}$
q_3	$\{q_3, q_0, q_1\}$
q_4	$\{q_4\}$
q_5	$\{q_5\}$

$\{q_0, q_1\}$	a	$\{q_2, q_4\}$
	b	$\{q_0, q_1, q_3\}$
$\{q_2, q_4\}$	a	$\{q_1, q_2, q_4\}$
	b	$\{q_0, q_1, q_3, q_5\}$
$\{q_0, q_1, q_3\}$	a	$\{q_2, q_4,\}$
	b	$\{q_0, q_1, q_3\}$
$\{q_1, q_2, q_4\}$	a	$\{q_1, q_2, q_4\}$
	b	$\{q_0, q_1, q_3, q_5\}$
$\{q_0, q_1, q_3, q_5\}$	a	$\{q_2, q_4\}$
	b	$\{q_0, q_1, q_3\}$

Accepting state is $\{q_0, q_1, q_3, q_5\}$. 1

а

Diagram should be drawn.

 q_1

5 (a) Let M be the following DFSM. Minimize M and draw the resultant minimized DFSM M'

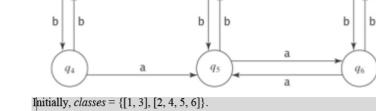
a

a

 q_{2}

[7] CO1 L3

Step 1: 4 marks Step 2: 3 marks



 q_2

CO1 L1

At step 1: ((1, a), [2, 4, 5, 6]) ((1, b), [2, 4, 5, 6])	((3, a), [2, 4, 5, 6]) ((3, b), [2, 4, 5, 6])		No splitting required here
((2, a), [1, 3])	((4, a), [2, 4, 5, 6])	((5, a), [2, 4, 5, 6])	((6, a), [2, 4, 5, 6])
((2, b), [2, 4, 5, 6])	((4, b), [1, 3])	((5, b), [2, 4, 5, 6])	((6, b), [1, 3])

These split into three groups: [2], [4, 6], and [5]. So classes is now {[1, 3], [2], [4, 6], [5]}.

At step 2, we must consider [4, 6]:

((4, a), [5])	((6, a), [5])
((4, b), [1])	((6, b), [1])

No further splitting is required. The minimal machine has the states: {[1, 3], [2], [4, 6], [5]}, with transitions as shown above.

What is a Mealy machine? Give an example. (b) [3] Mealy Machine: Finite state transducer in which the output depends both on the current Definition: 1 mark state and the current input. Example: 2 marks

six-tuple (K, Σ , O, δ , s, A), where:

- K is a finite set of states,
- Σ is an input alphabet,
- O is an output alphabet,
- $s \in K$ is the start state,
- $A \subseteq$ is the set of accepting states, and
- δ is the transition function. It is a function from $(K \times \Sigma)$ to $(K \times O^*)$.

A Mealy machine M computes a function f(w) iff, when it reads the input string w, its output sequence is f(w).

Example: Odd parity Bit after reading every 4 bit:

