
Module – 3 Artificial Neural Networks and Bayes Theorem 

1.(a)Explain appropriate problems for Neural Network Learning with its characteristics. 

1.Instances are represented by many attribute-value pairs.  

          The target function to be learned is defined over instances that can be described by a 

vector of predefined features. These input attributes may be highly correlated or 

independent of one another. Input values can be any real values. 

2.The target function output may be discrete-valued, real-valued, or a vector of several         

real- or discrete-valued attributes.  

3.The training examples may contain errors.  

   ANN learning methods are quite robust to noise in the training data. 

4.Long training times are acceptable.  

   Network training algorithms typically require longer training times than, say, decision tree   

learning algorithms. Training times can range from a few seconds to many hours, depending 

on factors such as the number of weights in the network, the number of training examples 

considered, and the settings of various learning algorithm parameters. 

5.Fast evaluation of the learned target function may be required. 

Though ANN learning times are relatively long, evaluating the learned network, in order to 

apply it to a subsequent instance, is typically very fast.  

6. The ability of humans to understand the learned target function is not important. 

The weights learned by neural networks are often difficult for humans to interpret. Learned 

neural networks are less easily communicated to humans than learned rules. 

Examples: 

 Speech recognition 

 Image Classification 

 Financial Predictions 

b). Consider two perceptrons defined by the threshold expression w0+w1x1+w2x2>0. 

Perceptron A has weight values w0  =1,  w1 =2, w2 =1, and  

Perceptron B has weight values w0  =0,  w1 =2, w2 =1 

True or False?  Perceptron A is more general than Perceptron B. 

Solution: 

We will say that hj is (strictly) more-general than hk (written hj >g hk) if and only if 

. Finally, we will sometimes find the inverse useful and will say 

that hj is more specific than hk when hk is more_general-than hj. 

 

 

 

 



X1 X2 w0+w1x1+w2x2 

Perceptron A 
w0+w1x1+w2x2 

Perceptron B 
A more 
general 

than  B 

(A B) 
0 0 1+2*0+1*0=1 0+2*0+1*0=0 1 

0 1 1+2*0+1*1=2 0+2*0+1*1=1 1 

1 0 1+2*1+1*0=3 0+2*1+1*0=2 1 

1 1 1+2*1+1*1=4 0+2*1+1*1=3 1 

 

B(<x1,x2>) = 1 2x1+x2 > 0  1+2x1+x2 > 0  A(<x1,x2>)) = 1 

True. 

2. a). Explain Gradient Descent algorithm along with derivation 

If the training examples are not linearly separable, the delta rule converges toward a best-fit 

approximation to the target concept. The key idea behind the delta rule is to use gradient descent 

to search the hypothesis space of possible weight vectors to find the weights that best fit the 

training examples. This rule is important because gradient descent provides the basis for the 

BACKPROPAGATION algorithm. 



 
 

The delta training rule is best understood by considering the task of training an  

unthresholded perceptron; that is, a linear unit for which the output o is given by 

 
Thus, a linear unit corresponds to the first stage of a perceptron, without the threshold. 

 

In order to derive a weight learning rule for linear units, let us begin by specifying a measure for 

the training error of a hypothesis (weight vector), relative to the training examples. Although 

there are many ways to define this error, one common measure that will turn out to be especially 

convenient is 

 
 where D is the set of training examples, td is the target output for training example 

d, and od is the output of the linear unit for training example d. 



 By this definition,  is simply half the squared difference between the target output td and 

the hear unit output od, summed over all training examples. Here we characterize E as a function 

of , because the linear unit output o depends on this weight vector. Of course E also depends 

on the particular set of training examples, but we assume these are fixed during training, so we 

do not bother to write E as an explicit function of these 

. In particular, there we show that under certain conditions the hypothesis that minimizes E is 

also the most probable hypothesis in H given the training data. 

 

DERIVATION OF THE GRADIENT DESCENT RULE 

We can calculate the direction of steepest descent along the error surface.This direction can be 

found by computing the derivative of E with respect to each component of the vector  This 

vector derivative is called the gradient of E with respect to  written . 

 

Notice  is itself a vector, whose components are the partial derivatives of E with 

respect to each of the wi. When interpreted as a vector in weight space, the gradient specijies 

the direction that produces the steepest increase in E. The negative of this vector therefore 

gives the direction of steepest decrease. 

Since the gradient specifies the direction of steepest increase of E, the training rule for gradient 

descent is 

  

Where  

  

Here  is a positive constant called the learning rate, which determines the step size in the 

gradient descent search. The negative sign is present because we want to move the weight vector 

in the direction that decreases E. This training rule can also be written in its component form 

 
Where  

    ---- (4.5) 

differentiating Error function E  from  

 



--- (4.6) 

 

where xid denotes the single input component xi for training example d. We now have an 

equation that gives in terms of the linear unit inputs xid, outputs Od, and target values td 

associated with the training examples. Substituting Equation (4.6) into Equation (4.5) yields the 

weight update rule for gradient descent 
 

 

2. b) Write the differences between standard and stochastic gradient descent approach. 

The key differences between standard gradient descent and stochastic gradient descent are: 

1. In standard gradient descent, the error is summed over all examples before updating weights, 

whereas in stochastic gradient descent weights are updated upon examining each training 

example.  

2.Summing over multiple examples in standard gradient descent requires more computation per 

weight update step. On the other hand, because it uses the true gradient, standard gradient 

descent is often used with a larger step size per weight update than stochastic gradient descent. 

3. In cases where there are multiple local minima with respect to , stochastic 
gradient descent can sometimes avoid falling into these local minima 

because it uses the various  rather than  to guide its search. 



3.Explain the following components of artificial neural networks 

i)  Perceptrons ii) Representational power of Perceptrons 

iii) Perceptron training rule 

 

i) Perceptron : 

The perceptron is the basic processing element. It has inputs that may come from the 

environment or may be the outputs of other perceptrons. Associated with each input, xj 

connection weight  j = 1, . . . , d, is a connection weight,or synaptic weight wj synaptic 

weight  and the output, y, in the simplest case is a weighted sum of the inputs 

 

w0 is the intercept value to make the model more general; it is generally modeled as the weight 

coming from an extra bias unit. 
A perceptron takes a vector of real-valued inputs, calculates a linearcombination of these inputs, then outputs a 

1 if the result is greater than some threshold and -1 otherwise. More precisely, given inputs xl through x,, the 

output o(x1, . . . , x,) computed by the perceptron is 

 
 

where each wi is a real-valued constant, or weight, that determines the contribution of input xi to 

the perceptron output. Notice the quantity (-wO) is a threshold that the weighted combination of 

inputs w1 x1+ . . . + wnxn must surpass in order for the perceptron to output a 1.To simplify 

notation, we imagine an additional constant input xo = 1, allowing us to write the above 

inequality as , or in vector form as   We will sometimes write the 

perceptron function as 

 
where 

 
ii) Representational power of Perceptrons 

We can view the perceptron as representing a hyperplane decision surface in the n-dimensional 

space of instances (i.e., points). The perceptron outputs a 1 for instances lying on one side of the 

hyperplane and outputs a -1 for instances lying on the other side, as illustrated in Figure. The 

equation for this decision hyperplane is . Of course, some sets of positive and 

negative examples cannot be separated by any hyperplane. Those that can be separated are called 

linearly separable sets of examples. 

 



 

a)A set of training examples that are linearly separable      b) A set of training examples that are not       

                                                                                                    linearly separable 

 

A single perceptron can be used to represent many boolean functions. For example, if we assume 

boolean values of 1 (true) and -1 (false), then one way to use a two-input perceptron to 

implement the AND function is to set the weights wo = -0.3, and w2 = w2 =0 .5. This perceptron 

can be made to represent the OR function instead by altering the threshold to wo = -0.3. AND and 

OR can be viewed as special cases of m-of-n functions: that is, functions where at least m of the 

n inputs to the perceptron must be true. The OR function corresponds to m = 1 and the AND 

function to m = n. Any m-of-n function is easily represented using a perceptron by setting all 

input weights to the same value (e.g., 0.5) and then setting the threshold wo accordingly. 

Perceptrons can represent all of the primitive boolean functions AND, OR, NAND (1 AND), and 

NOR (1 OR). Unfortunately, however, some boolean functions cannot be represented by a single 

perceptron, such as the XOR function whose value is 1 if and only if x1 ≠ x2. Note the set of 

linearly nonseparable training examples corresponds to this XOR function. 
 

 

 

A Perceptron  

 

 



iii) Perceptron training rule 

Neural networks has many interconnected perceptron units. We need to understand the weights 

for a single perceptron. 

 The precise learning problem is to determine a weight vector that causes the perceptron to 

produce the correct ± 1 output for each of the given training examples. There are two algorithms  

: the perceptron rule and the delta rule (These two algorithms are guaranteed to converge to 

somewhat different acceptable hypotheses, under somewhat different conditions. They are 

important to ANNs because they provide the basis for learning networks of many units.  

One way to learn an acceptable weight vector is to begin with random weights, then 

iteratively apply the perceptron to each training example, modifying the perceptron weights 

whenever it misclassifies an example. This process is repeated, iterating through the training 

examples as many times as needed until the perceptron classifies all training examples correctly. 

Weights are modified at each step according to the perceptron training rule, which revises the 

weight wi associated with input xi according to the rule  

 
where 

 

 
Here t is the target output for the current training example, o is the output generated by the 

perceptron, and q is a positive constant called the learning rate. 

 The role of the learning rate is to moderate the degree to which weights are changed at each 

step. It is usually set to some small value (e.g., 0.1) and is sometimes made to decay as the 

number of weight-tuning iterations increases. 

 

4.When will you go for multi layer neural networks?  Give the derivation of the back 

propagation rule. 
 

Single perceptrons can only express linear decision surfaces. When we want to learning  non 

linear training examples we need to go for using multilayer neural networks.  

 

BACKPROPAGATION Weight - Tuning rule: 

Back propagation algorithm uses stochastic gradient descent rule for iterating through the 

training examples one at a time, for each training example d descending the gradient of the error 

Ed with respect to this single example. For each training example d every weight wji is updated 

by adding to it .  

 

  
where Ed is the error on training example d, summed over all output units in the network 

 

 



Here outputs is the set of output units in the network, tk is the target value of unit k for training 

example d, and ok is the output of unit k given training example d. 

 
By using chain rule, 

 

 

 
 



 

 

 



 
5.Explain the back  propagation algorithm. Mention its limitations. Why is it not likely to 

be trapped in local minima? 

 

The BACKPROPAGATIlON algorithm learns the weights for a multilayer network, given a 

network with a fixed set of units and interconnections. It employs gradient descent to attempt to 

minimize the squared error between the network output values and the target values for these 



outputs. Because we are considering networks with multiple output units rather than single units.

 
 

Limitations : 

The error surface of multi layer network can have multiple local minima, in contrast to the 

single-minimum parabolic error surface. This means that gradient descent is guaranteed only to 

converge toward some local minimum, and not necessarily the global minimum error. 

Why is it not likely to be trapped in local minima? 

 

The BACKPROPAGATION algorithm implements a gradient descent search through the space 

of possible network weights, iteratively reducing the error E between the training example target 

values and the network outputs. Because the error surface for multilayer networks may contain 

many different local minima, gradient descent can become trapped in any of these. As a result, 

BACKPROPAGATION over multilayer networks is only guaranteed to converge toward some 

local minimum in E and not necessarily to the global minimum error.  
 

 

 

 



6.Prove that the posterior probability of hypothesis H(H is consistent with D)is inversely 

proportionate to version space of H with respect to D by using bayes theorem. 

 

 

 
 The problem for the learning algorithms is fully-defined 

 in a first step, we have to determine the probabilities for P(h|D) 

 
 this analysis implies that, under these assumptions, each consistent hypothesis is a MAP 

hypothesis, because for each consistent hypothesis  

 
Hence , the posterior probability of hypothesis H(H is consistent with D)is inversely proportionate to 

version space of H with respect to D. 

 



7.a)What is Bayes’ Theorem? How is it useful in a machine learning context? 

 

Bayes’ theorem incorporates prior knowledge while calculating the probability of occurrence of 

the same in future. So, the bayesian probability of some event B occurring provided the prior 

knowledge of another event(s) A, given that B is dependent on event A (even partially). 

 In machine learning we are interested in determining the best hypothesis from some 

space H, given the observed training data D.  

 One way to specify what we mean by the best hypothesis is to say that we demand the 

most probable hypothesis, given the data D plus any initial knowledge about the prior 

probabilities of the various hypotheses in H.  

 Bayes theorem provides a direct method for calculating such probabilities. More 

precisely, Bayes theorem provides a way to calculate the probability of a hypothesis 

based on its prior probability, the probabilities of observing various data given the 

hypothesis, and the observed data itself. 

 
 

 
P(h) - priorprobability of h 

P(D)-  prior probability that training data D 

P(D/ h) - the probability of observing data D given some world in which hypothesis h holds 

 P (h/ D) - posterior probability of h 

 

The approach allows for learning from experience, and it combines the best of classical AI and 

neural nets. 

7.b). Write the features of Bayesian Learning methods. 

o Each observed training example can incrementally decrease or increase the 

estimated probability that a hypothesis is correct.  

o This provides a more flexible approach to learning than algorithms that 

completely eliminate a hypothesis if it is found to be inconsistent with any single 

example.  

o Prior knowledge can be combined with observed data to determine the final 

probability of a hypothesis. 

o Bayesian methods can accommodate hypotheses that make probabilistic 

predictions 

o New instances can be classified by combining the predictions of multiple 

hypotheses, weighted by their probabilities.  

o standard of optimal decision making  

 
 

 

 



8. A patient takes a lab test and the result comes back positive. It is known that the test 

returns a correct positive result in only 98% of the cases and a correct negative result in 

only 97% of the cases. Furthermore, only 0.008 of the entire population  has this disease. 

i). What is the probability that this patient has cancer? 

ii). What is the probability that the patient does not have cancer? 

iii) What is the diagnosis? 

Solution: 

 
 

 

The maximum posteriori hypothesis can be 

 

 
Notice that while the posterior probability of cancer is significantly higher than its prior 

probability, the most probable hypothesis is still that the patient does not have cancer. 
 


