

USN

Internal Assessment Test II Scheme & Solution – OCTOBER 2018

Sub: Dot Net Application and Framework Development Sub Code: 15CS564 Branch: CSE/ISE

Date: 17/10/2018 Duration: 90 min’s Max Marks: 50 Sem / Sec: 5/A,B & C OBE

Answer any FIVE FULL Questions MARKS CO RBT

1 Define inheritance? Explain types of inheritance with an example.

Solution: Definition:-3M, Explanation:-7M

[10] CO3 L1

Solution: Definition:-2M, Explanation about importance of abstract classes:-2M

 2 (a)

How abstract classes are created? Explain the importance of abstract classes. [4]

CO3

L2

Advantages of Abstract Classes:

The purpose of an abstract class is to provide a common definition of a base class that multiple derived classes

can share. For example, a class library may define an abstract class that is used as a parameter to many of its

functions, and require programmers using that library to provide their own implementation of the class by

creating a derived class.

 (b) Explain about parameter array.

[6] CO3 L2

Solution: Explanation :-4M , Examples:-2M

Params

 By using params keyword we can pass any number of arguments.

Params array

 Using a params array, we can pass a variable number of arguments to a method.

Syntax: returntype methodname (params int [] arrayname)

Example:

class Example

{

int min (params int [] paramList)

{

if (paramList == null || paramList.length == 0) throw

ArgumentException (“Invalid”);

minval = paramList [0];

foreach (x in paramList)

if(x<minval)

minval = x;

}

static void Main (string [] args)

{

int res1 = min (10,3);

int res2 = min (10,2,4,6,32,80);

}

}

Rules on params array

 We cannot use params keyword for multidimensional array.

 Ex: int min (params int [,] array) //not possible

 We cannot overload a method based solely on the params keyword because params keyword is not a

part of the method signature.

 Ex: int min(params int [] array)

int min(int [] array) //not possible

 We are not allowed to specify ref or out modifiers with params array.

 Ex: int min(ref/out params int [] array) //not possible

 A params array must be the last parameter, we can have only one params array per method.

 Ex: int min (params int [] array, int i) //invalid

Int min (int I, params int [] array) //valid

 A non params method always takes priority over params method.

 Ex: int min (int x, int y)

int min (params int [] array)

 If we call the above method passing only 2 parameters, the first method will be called as it

gets priority.

Using params object:

 It allows us to solve the problem to pass the different number of arguments also with different types

of arguments.

 If we pass a value type as a parameter, the compiler generates the code to convert the value type to

reference type by boxing.

Example:

class Example

{

static void AnyMethod (params object [] paramList)

{

if (paramList == null || paramList.length == 0) throw

new ArgumentException (“Invalid”);

foreach (object x in paramList)

Console.WriteLine(x);

}

static void Main(String [] args)

{

AnyMethod (null); // null value(exception)

AnyMethod (); // length = 0(exception)

int [] a = {10, 5, 7, 20};

AnyMethod (a); // boxing

AnyMethod (“Appu”, 24, “Idly”, 80.56); // boxing for int values

}

}

Difference between optional parameters and params array

 Optional parameters

 A method that takes optional parameters, still it has a fixed parameter list and we cannot pass an

arbitrary list of arguments.

 The compiler generates code that inserts the default values onto the stack for any missing

arguments before it runs.

 Its not aware of which of the arguments are provided by caller and which are compiler generated

defaults.

 Params Array

 A method that uses the params array efficiently as a complete arbitrary values and none of them

are default.

 The method will determine exactly how many arguments the caller provided.

3 Define Interface? Explain how interfaces are created with an example. [10] CO3 L1

Solution: Explanation :-8M , Examples:-2M

Interface

 It does not contain any code or data. It just specifies the methods and the properties that a class that

inherits from an interface must provide.

 By using an interface, we can completely separate the names and the signatures of the method of a

class from methods implementation.

 Syntax is similar to defining a class except that we have to use interface keyword.

 Never specify an access modifier like public, private or protected because interface by default is

public.

 All the methods in the interface should be declared but not to be implemented inside the interface.

 The classes which implements the interface will define all the methods declared in the interface.

Example:

interface ILandBound

{

int NoOfLegs ();

}

class Horse : ILandBound

{

int NoOfLegs ()

{

return 4;

}

}

Note:

 If we want to inherit base class with interface, we have to specify the base class name followed by

any number of interfaces.

Example:

interface ILandBound

{

int NoOfLegs ();

}

class Mammal

{

….

….

}

class Horse : Mammal, ILandBound

{

int NoOfLegs ()

{

return 4;

}

}

 A class can inherit only one base class but n number of interfaces.

 Always the first parameter after the “:” should be the base class and then followed by n number of

interfaces.

Example:

class Horse : Mammal, ILandBound

{

……

……

}

 Rules:

 The method name and the return type should match exactly.

 In parameter including ref and out keyword modifier must match exactly.

 All methods implementing an interface must be publicly accessible. However if we are using an

explicit interface implementation, methods should not have access specifier.

 If there is any difference between interface definition and declaration, compiler shows an error.

 Referencing a class through its interface:

 We can assign the reference of a class to the reference of an interface if and only if the class is

implementing that interface. Else the runtime will throw an InvalidTypeCastException.

 Converse is not possible i.e., we cannot assign interface reference to the class reference.

 To typecast safely, we need to use is and as keywords.

interface ILandBound

{

int NoOfLegs();

}

class Horse : ILandBound

{

int ILandBound.NoOfLegs()

{

return 4;

}

static void Main(string [] args)

{

Horse h=new Horse(); ILandBound

i=h; //legal

IJourney j=h; //invalid cast exception

//So for this

if(h is ILandBound)

{

}

//or

}

}

}

ILandBound i=h;

ILandBound i=h as ILandBound;

 WORKING WITH MULTIPLE INTERFACES

 A class can have at most one base class but it can implement any number of interfaces.but it should

implement all the methods declared by there interface.

 Many interface will declare aa method with the same name,if a class implementing this interface the

method definitions belongs to both the interface.

Example:

interface ILandBound

{

int NoOfLegs();

}

interface IJourney

{

int NoOfLegs();

}

class Horse : ILandBound, IJourney

{

int ILandBound.NoOfLegs() //this implementation belongs

to both the interface

{

return 4;

}

}

 To avoid this will go for EXPLICITLY IMPLEMENTING AN INTERFACE: specify which

interface a method belongs to when we implement it.

Syntax: return type interface name.Methodname()

{

…………

………….

}

Example:

class Horse : ILandBound, IJourney

{

int ILandBound.NoOfLegs()

{

return 4;

}

int IJourney.NoOfLegs()

{

return 3;

}

}

Restriction of Interface:

 In an interface we are not allowed to define any fields even if it is static field.

 Interface is not allowed to declare any constructor or destructor because it requires implementation.

For this purpose interface instance cannot be reated.

 Cannot specify any access modifier for the interface as well as method declaration inside the

interface because implicitly it is public.

 We cannot declare or define any enumeration.

 Note:

 Interface is not allowed to inherit from structures or a class but interface can inherit from another

interface.

 For example if interface A inherits(interface extension) from interface B any class which implements

interface A must and should provide implementation for interface B too.

Example:

interface ILandBound

{

int NoOflegs ();

}

interface IJourney : ILandBound

{

int NoOfJourney ();

}

class Horse : IJourney

{

int NoOfLegs()

{

return 4;

}

int NoOfJourney()

{

return 3;

}

}

4 Write a c# program for create a windows application to build the Phone Book with

following options using Indexers

i) Add information ii) Search by Phone number iii) Search by Name .

[10] CO4 L3

Solution: Program:-10M

1. Create a form ,displaying two empty text boxes labeled Name and Phone Number. Two buttons one to

find a phone number when given name and one to find a name when given a phone number. And Add

button that will add a name/phone number pair to a list of names and phone numbers held by the

application.

2. Write the indexers to perform search operations

Sealed class Phonebook

{

 Public Name this [Phonebook number]

{

Get

{

 int i=Array.Indexof(this.phonenumbers,number);

if(i!=-1)

{

 return this.names[i];;

}

else

{

 return new Name();

}}}

 Public PhoneNumber this [Name name]

{

Get

{

 int i=Array.Indexof(this.names,name);

if(i!=-1)

{

 return this.phoneNumbers[i];;

}

else

{

 return new PhoneNumber();

}}}

Private void findbynameclick(object sender,RoutedEventArgs e)

{

 String text = name.Text;

If(!string.IsNullorEmpty(text))

{

 Name personName = new Name(text);

 PhoneNumber personPhoneNumber=this.phonebook[personName];

 PhoneNumber.Text = String.IsNullorEmpty(personsPhoneNumber.Text)?”not

found”:personphonenumber.Text;

}

}

Private void findbyPhoneNumberclick(object sender,RoutedEventArgs e)

{

 String text = phonenumber.Text;

If(!string.IsNullorEmpty(text))

{

 PhoneNumber personPhoneNumber = new PhoneNumber(text);

 Name personName=this.phonebook[personPhoneNumber];

 Name.Text=String.IsNullorEmpty(personName.Text) ? “not found”: personName.Text;

}

}

}

5 Why use the garbage collector? Explain with example and Explain How does the

garbage collector work with recommendations?

[10] CO3 L2

Solution: Use of garbage collector:-2M ,Explanation:-8M

The Common Language Runtime (CLR) will call the destructor.

o The lifetime of an object

We can create the object by using new operator. Ex:

Square s = new Square ();

We think that new operator is a single step process, but it has

o The new operator allocates a chunk of raw memory from the heap. The user doesn’t have any

control over this phase.

o The new operation converts the chunk of raw memory into an object, it has to initialize the

object. The user can control this phase by using constructor.

After an object is created we can access its members using the dot operator. Ex: s.Area ();

o Destroying the object

When the object variable goes out of scope, the object is no longer being actively referenced.

Then the object can be destroyed and the memory that it is using can be reclaimed.

The object destruction is a two phase process:

The Common Language Runtime (CLR) must perform some tidying up. User can control this

by destructor.

Once the destructor is called by CLR, it must return the memory previously belonging to the

object back to the heap. The process of destroying an object and returning the memory back

to the heap is known as garbage collector.

o Destructor

Destructor is a special method quite same like constructor except that CLR calls it after the reference

to the object is disappeared.

Syntax: ~NameOfClass ()

{

……

……

}

 Destructor is used to perform any tidying up that requires when object is garbage collected.

 The CLR automatically clears up and manages the resources, so defining destructor is not

mandatory.

 If managed resources is large or the object is referring to null reference, then defining the destructor

is useful.

 Rules for defining the destructor

 Destructor applies to reference type. We cannot define destructor for value type like struct.

 We cannot specify an access modifier such as public for a destructor because CLR calls it

automatically.

Example: public ~Square ()

{

……

……

}

 Destructor doesn’t take any parameters because we cannot call the destructor.

Example: public ~Square ()

{

……

……

}

File Processing

class FileProcessor

{

FileStream file = null;

public FileProcessor (string name

{

this.file = OpenRead (name);

}

~FileProcessor ()

{

this.file.Close();

}

}

Internally after C# compiles this code, automatically it translated destructor into an override of

Object.Finalize() method as shown below.

Compiler Code:

class FileProcessor

{

protected override void Finalize ()

{

try

{

……

……

}

finally

{

base.Finalize ();

}

}

}

To ensure that destruction always calls its base class destructor and exception can occur in destructor

also, so whatever code we have put as destructor, the compiler puts it in the try block.

 Why to use the garbage collector?

We cannot destroy an object by ourselves by using C# code.

CLR does it for us at the time of its own choosing.

In C# more than one reference variable refers to same object and any number if reference variable can

refer the same object. So CLR keeps track of all these references.

Ex:

If f1 disappears, the object still exists in the heap. We cannot reclaim the space.

So lifetime of an object cannot be tied to a particular reference variable.

An object can be destroyed and its memory made available only when all the reference variables

disappear.

 Why is the responsibility not given to the user?

We might forget to destroy the object. Destructor will not run. So tidying up would not occur and

memory is not returned back to heap. The any user will not be able to use that memory. It will be a

waste.

We try to destroy an active object and the risk is that one/more reference variable hold a reference to a

destroyed object. It refers to either unused memory or possibly to a completely different object that

happens to occupy same block of memory.

We may try to destroy same object more than once.

 Goals of garbage collector

Every object will be destroyed and its destructor will be run when the program end and all the

outstanding objets will be destroyed.

Every object will be destroyed exactly once.

Every object will be destroyed only when it becomes unreachable, ie, no reference variable is pointing

to that object.

 How the garbage collector works

The garbage collector runs in its own thread and can execute only at certain time typically when the

application reaches the end of the method.

When garbage collector is running, other thread will be halted because garbage collector might need to

move the object around and update object reference.

It has the following stpes:

 It builds a map of all reachable objects. It does this by reeatedly following references fields inside

objects.

 It maps very carefully and ensures that circular deferences will not point to infinite recurssion.

 It checks for unreachable objects that has a destructor that need to be run before finalization and

places all these objects in the FReachable queue.

 It deallocated the unreachable objects that doesn’t require finalizaation and reclaims the memory

back to heap. At this point it allows other threads to resume.

 It finalizes the objects that requires Finalization by running

 Recommendation

Writing destructor adds complexity to our code and the garbage collector process and makes programs runs

slowly. So only if we have unmanaged resources to define the resources.

6 Briefly explain the properties in C#. [10] CO4 L1

Solution: Explanation:-10M

Properties

Syntax:

accessModifier type PropertyName

{

set

{

}

get

{

}

}

…..

…..

Example:

struct Screenposition

{

private int x, y;

public int X

{

set

{

}

get

{

}

}

this.x = checkRange (value);

return this.x;

public int Y

{

set

{

}

}

this.y = checkRange (value);

private static int checkRange (int value)

{

if (value < 0 || value > 1024)

{

throw new ArgumentOutOfRangeException;

}

return value;

}

static void Main (String [] args)

{

int value;

ScreenPosition st = new ScreenPosition ();

s.X = 100;

value = s.X;

s.X+= 10;

}

}

Property:

 It is a cross between a field and a method.

 It looks like a field but acts like a method.

 User will access the same like a field but the compiler will take as a method.

 A property can contain two blocks of code which starts with set and get keywords.

Using Property

s.x = 100; //set

value = s.x; //get

s.x += 10; //both set and get

Read only property

accessModifier type PropertyName

{

get

{

}

}

…..

…..

Write only property

accessModifier type propertyName

{

set

{

}

}

…..

…..

Property Accessibility

 We can change the accessibility of only one of the accessor when we define it (get or set).

 It would not make much sense to define a property as public only to change the accessibility

of both accessor to private anyways.

 The modifier must not specify an accessibility that is less respective than that of the property.

(Don’t make the property as private. Instead make either get or set as private.)

struct ScreenPosition

{

private int x;

public int X

{

private set

{

this.x = checkRangex (value);

}

public get

{

……

……

}

}

void change ()

{

x = 100;

}

}

Using property appropriately:

 Properties are powerful features but we have to use in the correct manner. Ex:

class Account

{

private int bal;

public int Balance

{

set

{

}

get

{

}

}

}

this.bal = value;

return this.bal;

 In the above example, the balance of the user is not updated correctly. Suppose a person has Rs.

1000 and he uses get property to withdraw Rs. 500, the Rs. 1000 balance is not changed to Rs.

500.

 So this is a poor programming method.

 To overcome this we use separate withdraw and deposit methods.and give only read permission for

balance property.

public int Balance { get{return this.bal; } }

Property restrictions:

 We can assign a value through a property of a structure or a class only after structure of class

variable is been initialized (object is created).

 Without object, we get error. Ex:

ScreenPosition s;

s.x = 100; //Error

ScreenPosition s = new ScreenPosition ();

s.x = 100; //Valid

 We cannot use a property with ref or out arguments to a method. Ex: void

method (ref s.x) //Error

 Property can contain atmost one get accessor and one set accessor. It cannot contain other methods

or fields or properties.

 The get and set cannot take any parameters. The parameters being assigned is passed to the

set accessor automatically by using value variable.

 We can’t declare property using const and static, but we can have if condition in get and set

accessor.

Declaring interfaces properties

 Interface can declare properties as well as methods.

 A class or a structure that implements this interface must implement the get as well as set accessors

for the properties.

 If the class implements the interface, we can declare the property implementation as virtual which

enables the derived classes to override the implementation.

 If we implement an interface in a class, that definition belongs to a class as well as interface. If

we want to give a specific implementation for interface, we need to go for explicit interface

definition.

Ex:

interface IScreenPosition

{

int x

{

}

int y

{

}

}

get;

set;

get;

set;

class Example : IScreenPosition

{

private int _x, _y;

public int x

{

get

{

}

set

{

}

}

return this._x;

this._x = value;

int IScreenPosition.X

{

get

{

}

set

{

}

}

return this._x;

if (value < 1024)

this._x = value;

Main ()

{

Example c = new Example ();

c.X= 10;

Console.WriteLine (c.X);

IScreenPosition i = e as IScreenPosition (); if (i

!= null)

{

i.x = 100;

Console.WriteLine (i.X);

}

}

}

Generating automatic property

 We need to focus on two things with respect to properties

o Compatibility with application: The fields and properties explore themselves by using

different metadatas in assembly. If fields are public, it can be accessed by any class but

properties enforces encapsulation. If we want to change a field to a property, entire

application changes and we need to recompile the application.

o Compatibility with interfaces: If we are implementing an interface, and the interface defines

an item as a property, the class must and should write a property that matches the

specification to the interface. We cannot implement a property for public fields.

 Because programmers are busy, the compiler automatically generates the code for property for

the programmer’s convenience.

 It looks like a interface but here we specify access modifiers like public, private or protected.

 We can have automatic get but not set.for example we should not change the file when it is

created or owner of the file.

 For this reason, we need to initialize the value. Ex:

public DateTime day

{

get;

} = DateTime.now;

class Example

{

private DateTime day;

public Example (DateTime y0

{

Day = y;

}

}

Initializing Objects by using properties

 For various scenarios or combinations, we must initialize the fields. We will end up by writing

multiple constructors.

 We are not able to write a unique constructor which has same time and same number of

parameters.

 To overcome this drawback:

o Use optional parameters and pass the arguments in the constructor by using named

arguments.

o Better and transparent solution is using properties. Initialize the private fields to set a

default values and expose them as properties.

Ex:

class Triangle

{

private int s1 = 10, s2 = 10, s3 = 10;

public int Side1

{

get

{

}

set

{

}

}

return this.s1;

this.s1 = value;

public int Side2

{

get

{

}

set

{

}

}

return this.s2;

this.s2 = value;

public int Side3

{

get

{

}

set

{

}

}

}

return this.s3;

this.s3 = value;

static void Main (String [] args)

{

Triangle t1 = new Triangle { Side1 = 15 }; //this is called object initializer

Triangle t2 = new Triangle { Side3 = 15, Side 2=12 };

}

 When we invoke object initializer, C# generates the code for calling the default constructor

and then it calls the set accessor of the property.

 We can also call a parameterized constructor and then the object initializer.

 Remember that always the constructor will be called first and then the property.

Write a C# program which defines a class Polygon which has 2 properties number of sides and side

length. Using object initializer, create 3 types of polygons Square, Triangle, Pentagon and print

each polygon’s sides and its values.

class Polygon

{

String name;

private int sides = 10, length = 10;

public Polygon (String name)

{

this.name = name;

}

public int Side

{

get

{

}

set

{

}

}

return this.sides;

this.sides = value;

public int Length

{

get

{

}

Set

{

}

}

}

return this.length;

this.length = value;

public class Demo

{

static void Main (String [] args)

{

Polygon p1 = new Polygon (“Square”) { Side = 4, Length = 20 }; Polygon

p2 = new Polygon (“Triangle”) { Side = 3, Length = 10 }; Polygon p3 =

new Polygon (“Pentagon”) { Side = 5, Length = 40 }; Console.WriteLine

(p1.name + “ ” + p1.Side + “ ” + p1.Length); Console.WriteLine (p2.name,

p2.Side, p2.Length); Console.WriteLine (p3.name, p3.Side, p3.Length);

}

}

Output:

Square 4 20

Triangle 3 10

Pentagon 5 40

7 Define indexers? Explain the use of indexers.

[10] CO4 L1

Solution : Definition:-2M ,Explanation:-8M

C# provides a set of operators that we can use to access and manipulate the individual bits like NOT

operator, Left Shift, Right Shift, OR, etc.

Suppose for a binary number, we need to check if the 6th bit from right is 0 or not. We use bits = bits &

(1<<5) != 0

To set bit to 0

bits bits & ~(1<<5)

To set bit to 0

bits = bits 1 (1<<5)

Unfortunately this is not an abstract solutions because we need to repeat this logic to set or unset for specific

index.

For that purpose we can’t give square bracket notation for integer because it works only for arrays.

We can’t give

bits [3] = true;

bits [5] = false;

We cannot use [] notation in int type variables.

So we need to create a new type that acts like and use like arrays of bool variables but implemented

for int. That is knows as indexer.

Indexer:

 Indexer is same like property as smart field where a property encapsulates a single value in a

class but an indexer encapsulates a set of values.

 An indexer is not a method. There is not parenthesized containing a parameter but there are

square brackets specifying the index.

 All indexer uses this keyword.

 A class or a structure can use at most 1 indexer or it can overload an indexer but always the

name of the indexer is this.

 Indexer acts like a property which has get and set accessor.

 The index specified in the indexer is populated when the indexer is called.

Ex:

struct IntBIts

{

private int bits; public

intBits(int val)

{

bits = val;

}

public bool this[int index]

{

get

{

}

set

{

return (bits &(1<<index) != 0);

if(value)

bits = bits|(1<<index);

else

}

}

bits = bits&(1<<index);

public void display()

{

Console.WriteLine(“bits = {0}”, bits);

}

}

Class program

{

Static void Main(string [] args)

{

IntBits b = new IntBits(126);

bool ans = b [6] //retrieves bool at index 6;

b[0] = true;

b[3] = false;

b.display (); //ans will be 119;

}

}

UNDERSTANDING INDEXER ACCESSOR

 When we read an indexer the compiler automatically translates the array like code into call to get

accessor of that indexer.

bool p = b [5]; //get

 When we write to an indexer the compiler automatically translates the array like code into call

to set accessor of that indexer.

b [1] = true; //set

 It is also possible to use an indexer in a combined read/write context b [5] =

b[5]^true; //set and get

program to show how array is implemented using indexer.

 class IndexerDemo

{

private String [] nameList = new String [10];

public String this [this Index]

{

get

{

}

set

{

}

}

if (Index >= 0 && Index < 10)

return nameList [Index];

if (Index >= 0 && Index < 10)

nameList [Index] = value;

static void Main (String [] args)

{

IndexerDemo ID = new IndexerDemo ();

ID[0] = “Piddy”;

ID[5] = “Pradeep”;

for (int i = 0; i < ID.length; i++)

Console.WriteLine (ID [i]);

}

}

Comparing indexers and arrays:

 Indexers can use non numerical subscript like String, char, float, double.But arrays can use only

integers as subscript.

 Indexers can be overloaded just like methods public

int this [String Index]

{

….

….

}

public int this [String Index]

{

….

….

}

 Indexers cannot be used as ref and out as parameters because it already is a reference

type.

Method(ref bits[5]);

Comparison between property array and indexer array Property

array

 It is possible that the property can return an array but since the arrays are reference types so

exposing an array as a property creates the possibility of accidently overwriting the data.

class PropertyDemo

{

private int [] data = new int [10];

public int [] Data

{

set

{

}

get

{

}

}

this.data [i] = value;

return this.data [i];

static void Main (String [] args)

{

PropertyDemo PD = new PropertyDemo ();

int [] value = PD.Data;//reference to reference copy value [0] ++;//

its also updates in private field data[0] too.

}

}

Indexer Array

class IndexerDemo

{

private int [] data = new int [10];

public int this[int i]

{

set

{

}

get

{

}

}

this.data [i] = value;

return this.data [i];

static void Main (String [] args)

{

IndxerDemo ID = new IndexerDemo ();

 int [] value =new int[5];

value [0] =ID[0];it just assignes the value not the reference

value[0]++//upadtes only in value array not in private array data[0]

}

}

Indexers in Interface

 We can declare indexers in an interface specifying the get keyword and set keyword or but replace

the body of get and set accessor with a semicolon.

Any class or structure implements the interface must implement the indexer accessors

declared in the interface.

interface IData

{

int this [int Index]

{

get;

set;

}

}

class Example : IData

{

private int [] data = new int [10]; int

IData. this [int index]

{

set

{

}

get

{

this.data [i] = value;

return this.data [i];

}

}

}

	Params
	Params array
	Rules on params array
	Using params object:
	Difference between optional parameters and params array
	 Params Array
	Interface
	 Rules:
	 Referencing a class through its interface:
	o The lifetime of an object
	o Destroying the object
	o Destructor
	 Rules for defining the destructor
	Property:
	Using Property
	Read only property
	Write only property
	Property Accessibility
	Using property appropriately:
	Property restrictions:
	Declaring interfaces properties
	Generating automatic property
	Initializing Objects by using properties
	Output:
	Indexer:
	UNDERSTANDING INDEXER ACCESSOR
	Comparing indexers and arrays:
	Comparison between property array and indexer array Property array
	Indexer Array
	Indexers in Interface

