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Internal Assessment Test 2 — Oct. 2018 -
- Sub: | Discrete Mathematical Structures Sub Code: 17CS36 | Branch: CS
Date: 17/10/2018  Duration: . 90 mins. Max Marks: 50 = Sem / Sec: [-A,B&C
Question 1 is compulsory and answer any six from Q.2 to Q.10 MARKS
1 Prove by direct method, indirect method and the method of contradiction that “If n is an odd
integer then n+9 is an even integer.”
2 Find the negation of “All integers are rational numbers and some rational numbers are not (07] Cor L2
integers.”
3 . . ! . ! [o71  CoO1 L3
Determine the truth value of each of the following quantified statements, the universe being
the set of all non — zero integers. (i) Jx, Iy, [xy = 1] (i) Ix, Yy, [xy = ]]
(iii) Vx, 3y, [xy . 1] (iv) 3x, 3y, [(2x +y=5A(x-3y= —8)]
v) 36, [Bx -y =1T)A(Rx+4y =3)]
4  Find the coefficients of (i) x° in the expansion of (3x* — (2/x))" [07]  CO3
(ii) x'* in the expansion of x*(1-2x)". .
5 LetA={1,2, ...... 12 } let R be a relation on A defined by (x,y)eR if and only if x-y is a [07]  CO3
multiple of 5. Verify that R is an Equivalence relation. Find the partition of A induced by R. o
6.  Draw the Hasse diagram for the relation defined by aRb if and only if a|b on the set 03 L2

containing positive divisor of 36.
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odd integer then n+9 is an even integer.” ‘
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(ii) x'? in the expansion of x’(1-2x)".
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multiple of 5. Verify that R is an Equivalence relation. Find the partition of A induced by R.
6  Draw the Hasse diagram for the relation defined by aRb if and only if alb on the set [07] | (X

containing positive divisor of 36.
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3x—5 forx>0
—3x+1 forx<0

@  Find £(0) £(5/3).f"B).f(=6)./7(0).
(i)  Determine £ ([-5,5]).

Consider the Hasse diagram of a POSET (A, R) given below:

Let f:A_)Bbedeﬁnedby f(x)z{

a2 Ty ; . . . '
Find maximal, minimal, greatest and least element

If B,={c, d, e}, find (if they exist) all upper bounds , lower bounds, least upper bound,
greatest lower bound of B;.

Let f, g, h be functions from Z to Z defined by

0. if x i
f (x) =x-1, g(x) =3x, h(x) = {1: i;fxxi;soe;;n . Determine

(f o (g o WNx) and (£ = g)o h)ee) and verify that f <(g o h) = (f * g) h-
ABC is an equilateral triangle whose sides are of length lcm each. If we select 5 points

inside the triangle, prove that at least two of these points are such that the distance between
them is less than 2 cm.

3x—5 forx>0
-3x+1forx<0

Giy  Find £(0), £(5/3), /7' @) £ (=6).£7(0).
(iv)  Determine £ ([— 5,5]).

Let f:A_%Bbedeﬁnedby f(x):{

Consider the Hasse diagram of a POSET (A, R) given below:

¥ oh
/%\‘f

{:f{’:: b

&y b . . 4 @
Find maximal, minimal, greatest and least element

If Bi={c, d, e},find (if they exist) all upper bounds , lower bounds, least upper bound,
greatest lower bound of Bj.

Let f, g, h be functions from Z to Z defined by

0, if x is even
=x-1 = = . Determi
f(x) x-1, g(x) 3x; h(x) {],ifx is odd etermine

(f o (g ° h))(x) and ((f ° g)o h)(x) and verify that f o (g ° h) = (f ° g)o k.
ABC is an equilateral triangle whose sides are of length Tem each. If we select 5 points

inside the triangle, prove that at least two of these points are such that the distance between
them is less than '2 cm.
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