		-			
USN					

Internal Assessment Test 2 – Oct. 2018

Sub:	Discrete Mathe	ematical Struc	tures			Sub Code:	17CS36	Branch:	CS			
Date:	17/10/2018	Duration:	90 mins.	Max Marks:	50	Sem / Sec:	III - A	, В & С		OB	3 E	
	Quest	tion 1 is com	pulsory and	l answer any s	ix fro	m Q.2 to Q	.10	M	ARKS	CO	RBT	
1	Prove by direct	method, ind	irect method	and the metho	d of o	contradiction	that "If n is an	n odd	[80]	CO4	L3	
	integer then n+	9 is an even	integer."									
2	Find the negati	on of "All in	itegers are ra	tional numbers	and	some rationa	al numbers are	not	[07]	COI	L2	
	integers."											
3	Determine the	truth value o	f each of the	following quar	ntified	d statements.	the universe b	eing	[07]	CO1	L3	
	the set of all no							0				2.4
	(iii) $\forall x, \exists y, [x]$						-1					
	(m) $\forall x, \exists y, [x)$	$V = IJ(IV) \perp J$	$(, \exists y, [(2x +)$	$y = 3) \wedge (x - 3)$	y = -	-0)]						
	(v) $\exists x, \exists y, [(3x)]$	v - v = 17	(2x+4y=3)	3)]								
		,		7.1	,		2	1.5	IF WATER TOO			
4	Find the co			in the ex	pans	sion of ($3x^2 - (2/x)$	()) ¹³	[07]	CO3	L3	
	(ii) x ¹² in the ex		,									
5	Let $A = \{1, 2,\}$								[07]	CO3	L3	
	multiple of 5. V											
6.	Draw the Has	se diagram	for the relat	ion defined by	y aRl	o if and only	y if $a b$ on the	e set		CO3	L2	
	containing po	sitive divis	or of 36.									

USN	TALL THE COLUMN TO THE COLUMN			
			1	1

Internal Assessment Test 2 – Oct. 2018

					Y		
Sub:	Discrete Mathematical Structures Su	ub Code:	17CS36	Branch:	CS		
Date:	17/10/2018 Duration: 90 mins. Max Marks: 50 Set	, B & C	ζC		3E		
	Question 1 is compulsory and answer any six from Q.2	2 to Q.10		MA	RKS	CO	RBT
1	Prove by direct method, indirect method and the method of coodd integer then n+9 is an even integer."	ontradicti	on that "If n i	s an [[80	CO4	L3
2	Find the negation of "All integers are rational numbers and s not integers."	some rati	ional numbers	are [07]	COI	L2
3	Determine the truth value of each of the following quantified states the set of all non – zero integers. (i) $\exists x, \exists y, [xy=1]$ (ii) $\exists x$ (iii) $\forall x, \exists y, [xy=1]$ (iv) $\exists x, \exists y, [(2x+y=5) \land (x-3y=-8)]$	$x, \forall y, [xy]$		eing [07]	CO1	13
4	(v) $\exists x, \exists y, [(3x - y = 17) \land (2x + 4y = 3)]$ Find the coefficients of (i) x^0 in the expansion	n of ($3x^2 - (2/x^2)$	(a)) ¹⁵ [07]	CO3	L3
5	(ii) x^{12} in the expansion of $x^3(1-2x)^{10}$. Let $A = \{1, 2, \dots, 12\}$ let R be a relation on A defined by (x,y) multiple of 5. Verify that R is an Equivalence relation. Find the				07]	CO3	L3
6	Draw the Hasse diagram for the relation defined by aRb if a containing positive divisor of 36.				07]	CO3	L2

[07] CO3 Let $f: A \to B$ be defined by $f(x) = \begin{cases} 3x - 5 & \text{for } x > 0 \\ -3x + 1 & \text{for } x \le 0 \end{cases}$ Find f(0), f(5/3), $f^{-1}(3)$, $f^{-1}(-6)$, $f^{-1}(0)$ Determine $f^{-1}([-5,5])$. (ii) CO3 1.3 [07] Consider the Hasse diagram of a POSET (A, R) given below: 8 Find maximal, minimal, greatest and least element If $B_1 = \{c, d, e\}$, find (if they exist) all upper bounds, lower bounds, least upper bound, greatest lower bound of B₁. [07] CO3 L3 Let f, g, h be functions from Z to Z defined by $f(x) = x - 1, g(x) = 3x, h(x) = \begin{cases} 0, & \text{if } x \text{ is even} \\ 1, & \text{if } x \text{ is odd} \end{cases}$. Determine $(f \circ (g \circ h))(x)$ and $((f \circ g) \circ h)(x)$ and verify that $f \circ (g \circ h) = (f \circ g) \circ h$. CO3 L2 10 ABC is an equilateral triangle whose sides are of length 1cm each. If we select 5 points [07] inside the triangle, prove that at least two of these points are such that the distance between

them is less than ½ cm.

them is less than ½ cm.

CO3 L3 [07] Let $f: A \to B$ be defined by $f(x) = \begin{cases} 3x - 5 & \text{for } x > 0 \\ -3x + 1 & \text{for } x \le 0 \end{cases}$ 7 (iii) Find f(0), f(5/3), $f^{-1}(3)$, $f^{-1}(-6)$, $f^{-1}(0)$. (iv) Determine $f^{-1}([-5,5])$. 1.3 CO3 [07] Consider the Hasse diagram of a POSET (A, R) given below: 8 Find maximal, minimal, greatest and least element If $B_1 = \{c, d, e\}$, find (if they exist) all upper bounds, lower bounds, least upper bound, greatest lower bound of B₁. [07] CO3 Let f, g, h be functions from Z to Z defined by $f(x) = x - 1, g(x) = 3x, h(x) = \begin{cases} 0, & \text{if } x \text{ is even} \\ 1, & \text{if } x \text{ is odd} \end{cases}. \text{ Determine}$ $(f \circ (g \circ h))(x)$ and $((f \circ g) \circ h)(x)$ and verify that $f \circ (g \circ h) = (f \circ g) \circ h$. CO3 1.2 ABC is an equilateral triangle whose sides are of length 1cm each. If we select 5 points [07] inside the triangle, prove that at least two of these points are such that the distance between 10

```
IAT-2, Solution - DMS (2018)
(1) p: n is an odd integer
                                        ___(/)
     9: n+9 is an even integer
  Direct Method: Let p be Ilsue
               \therefore n = 2K+1
              Then n+9= 2K+1+9= 2(K+5)= even ent.
              is q is tree.
                                           -(2)
       Hence p - q is true.
  Indirect: 7p: n is an even ient.
               79: n+9 is an odd ient.
       Let 79 be luce
           : n+9 is an odd ent or n+9 = 2K+1
                     n = 2k+1-9 = 2(k-4) = even
            :. Tp is Isue => 79-176 is Isue - (2)
            : p > q is there
  Method of contradection: Let p-9 be false
         so p is true & q is false
     Let q is false then 79 is true
             n+9=2k+1 \Rightarrow n=2(k-4)=even
         but n is odd as p is the
           which is a contradiction
```

2. Let of sentegers, \mathbf{Q} : Set of rational no. p(x): x is a rational no. q(x): x is an integer q(x):

. ° p → 2 es thue

```
Symbolic form: (\forall x \in Z, p(x)) \land (\exists x \in S, 79(x)) \longrightarrow (1)
  Megalian: 7((\forall x \in Z, p(x))) \land (\exists x \in \emptyset, 7g(x)) \longrightarrow (1)
            = (\exists x \in Z, \forall p(x)) \lor (\forall x \in Q, Q(x)) (Se morgan's f
                                             - (2) double negation)
    : Some integers are not sational no. or all sational no.
     are ientegers.
(3) Given Z-203 as universe
     (i) \exists x, \exists y, [xy=1] (T) (for x=1, y=1) —(1)
    (ii) Ix, ty, [xy=1] (f) (for fixed x, xy=1 is not true ty)
   (iii) +x, 7y [xy=1] (F) (for x=2, there is no y) -(1.5)
   (i) \exists x, \exists y, [(2x+y=5)n(x-3y=-8)]
                      (T) (for x=1, y=3)
                                                                      ___(1.5)
  (v) \exists x, \exists y \ [(3x-y=17) \land (2x+4y=3)]
                   (F) (As equations don't have a
                                       Common ienteges solution)
(4) (i) (3x^2 - \frac{2}{x})^{15} = \sum_{3=0}^{15} {15 \choose 2} (3x^2)^3 (-\frac{2}{x})^{15-2} (1)
                  = \sum_{n=0}^{15} {15 \choose 2} 3^{2} (-2)^{15-2} x^{32-15} \qquad (1)
    Coeff. of x which corresponds to 2 = 5 is - (/2)
                     \binom{15}{5} \binom{3}{5} (-2)^{10}
            x^{3}(1-2x)^{10} = x^{3} \sum_{x=0}^{10} {10 \choose x} {10 \choose x}^{2} (-2x)^{10-x}
                 = \sum_{k=0}^{\infty} {\binom{10}{k}} {(-2)}^{10-2} {(3e)}^{13-2}  (1)
```

```
Coeff. of 2^{12} which corresponds to \xi=1 is -\left(\frac{1}{2}\right)
              = \binom{10}{1}(-2)^9
5. A= {1,2,--. 12}
       (x,y) ER iff x-y is a multiple of 5
                 e.e. x-y = 5m (say)
   Reflexive: Let x & A
             Then \chi - \chi = 0 = 5 \times 0
               \therefore xRx or (x,x) \in R
           : R'es reflexive
  Symmeteric: Let x, y & A
              Of (x,y) ER i-e. x-y=5m
                               or y-x=-5m=5(-m)
           SO (Y,X) ER
                                                - (1)
             :. R es symmetric.
   Transitive: Let x, y, Z EA
          of (x,y) er & (y, 2) er
           e.e. x-y= Son, y-z= Sn
              \Rightarrow (x-y)+(y-z)=S(m+n) \text{ or } x-z=S(m+n)
           (x,z)\in R
                                     : R is an équivalence
           : R is transilire.
                                                   selation.
  Équivalence classes:
   [1] = [1, 6, 11] = [6] = [11]
    [2] = {2,7,12} = [7] = [12]
    [3] = {3,8} = [8]
    [4] = {4,9} = [9]
```

[5] = {5, 10} = [10]

____ (2)

$$(fo(goh))(x) = f[goh(x)]$$

$$= f[g(h(x))]$$

$$= f(3h(x)) = 3h(x) - 1 = 3\begin{cases} 0, \text{ even} \\ 1, \text{ odd} \end{cases} - 1$$

$$= \begin{cases} -1, & \text{is even} \\ 2, & \text{x is odd} \end{cases}$$

$$= \begin{cases} 3.5 \end{cases}$$

$$((f \circ g) \circ h)(x) = f \circ g[h(x)]$$

 $= f[g(h(x))] = f(3h(x)) = 3h(x) - 1$
 $= \begin{cases} -1, x \text{ is even} \\ 2, x \text{ is odd} \end{cases}$ $\therefore f \circ (g \circ h) = (f \circ g) \circ h$

(10) Consider les brangle DEF former by the mid Bls of the sides AB, AC

& BC of DABC. DABC is partitioned into four small equilateral theorytes

each of which has sides equal to

-cm. Preating each of these four I cm. Preating each of these four portions as a pigeonhole and fine pts chosen inside the

A as pigeons. By pigeonhole principle at least one portion

must contain lux of more points. Clearly, distance b/w such foints is less than z cm. — (5)

2. Let the set of the divisors of 36 be. A. $A = \{1, 2, 3, 4, 6, 9, 12, 18, 36\}$ R = f(1,1), (1,2), (1,3), (1,4), (1,6), (1,9), (1,12), (4,18), (1,36), (2,2), (2,4), (2,6), (2,12), (2,18), (2,36), (3,3), (3,6), (3,9), (3,12), (3,18), (3,36), (4,4), (4,12), (4,36), (6,6), (6,012), (6,18), (6,36), (9,9), (9,18), (9,36), (12,12), (12,36), (18,18), (18,36), (36,36)} Maximal Elements: 9 & h Minimal Elements: a & b Greatest Elements: Least Elemente: $B_1 = \{c,d,e\}$ Opper Bound of B, = f, g, h Least UB of B, = f Lower Bound of B, = a,b, C

Greatest LB of B, = C

-(1/2)

$$f(x) = \begin{cases} 3x - 5 & \text{for } x > 0 \\ -3x + 1 & \text{for } x \leq 0 \end{cases}$$

$$f(0) = -3(0) + 1 = 1$$

$$f(5/3) = 3(5/3) - 5 = 0$$

$$\Rightarrow f(x) = 3$$

$$32-5=3$$
 $-32+1=3$

$$3x = 8$$
 $-3x = 2$

$$3x = 8$$

$$x = 8/3$$

$$-3x = 2$$

$$x = -2/3$$

$$f^{-1}(3) = \{8/3, -8/3\}$$

$$f(n) = -6$$

$$3x-5=-6$$
 | $-3x+1=-6$

$$3\alpha = -1 \qquad -3\alpha = -7$$

$$\chi = -\frac{1}{3}$$

$$\chi = -\frac{1}{3}$$

$$\chi = \frac{7}{3}$$

#

$$f(\chi) = 0$$

$$3x-5=0$$
 $-3x+1=0$

$$x = 5/3 \qquad -3x = -1$$

$$n = \frac{1}{3}$$

$$-(i)$$

$$f'(0) = 5/3 - 0$$

$$f'([-5,5]) = \{x \mid f(x) \in [-5,5]\}.$$

$$= \{x \mid -5 \le f(x) \le 5\}.$$

$$-5 \le (3x - 5) \le 5 \quad | -5 \le (-3x + 1) \le 5$$

$$-4/3 \le 2 \le 2$$

$$\int_{-1}^{1} ([-5,5]) = [-4/3,10/3]$$