CMR

INSTITUTE OFTECHNOLOGY USN

§ CMRIT
=) CMRIT

Second Internal Test

Sub: | Automata Theory and Computability Code: 15CS54
Date: 16/10/ 2018 Duration: |90 mins | Max Marks: 50 Sem: V | Branch: ISE
Answer ANY 5 Full Questions
Mark OBE
arks CO_[RBT
1 (a) | Write a regular expression to describe each of the following languages: [04] CO2 | L3
i) {w e {0-9}* : w corresponds to the decimal encoding, without leading 0’s, of 2 Marks each
an odd natural number}.
(U ((2-9)(0-9)*)H)(1 U3 U5 UT UY9)
i) {w e {a, b}* : w has both aa and bb as substrings}.
(a U b)* aa (a U b)* bb (a U b)* U (a U b)* bb
(b) [Convert following FSM to RE. [03] CO2 | L3
d
i Partially
d 8 a’z Correct Give 2
b) /7 b marks
| = ' =
@)
(a2 Ubb*aa)* (¢ Ubb*(a UEg)).
(c) |Indicate, for each of the following regular expressions, whether it correctly
describes L: [03] CO3 | L3
a. (a U ba)bb*a.
b. (¢ U b)a(bb*a)*. At least Three
¢. bau ab*a. correct give 3
d. (a U ba)(bb*a)*. marks
a) no; b) yes; c) no; d) yes.
2 (a) [Briefly explain the applications of regular expression. [02] COl| L2
Email, 2 with
IP addressing examples
Legal Passwords explanation
XML can be given.
(b) |Define regular expression. Write the regular expression for the following [04] CO3| L3
language.
(i) L={a"b"|n<=4, m>=2} 2 marks each
(e+a+aa+aaa+aaaa)bbb*
(ii) Strings of 0's and 1's having at least two 0's
(0+1)*0 (0+1)*0 (O+1)*
(c) |Simplify the following Regular expression. [04] CO3 | L3
(a(@Ub)bUa))*Ua((@Ubla)*Ua((bUa)b)*
a((aub)(bua)). 2 marks each
(i) (a U b)*a* U b.
(aub)~.
3 (a) [Show the regular language for the following Language. [04] CO3 | L3
Partial correct

Page 1 of 8

{w € {a, b}*: w does not end in aa}.

expression can

be given 2-3
guau(aub)* (bauabU bb) marks
(b) |Let L ={w € {a, b}*: every ain w is immediately followed by at least one b}. [06] CO3 | L3
(i) Write a regular expression that describes L. 2+2+2 marks
(ab U Db)*
(ii) Write a regular grammar that generates L.
S - bS
S— aT
S —>¢€
T- bS
(iii) Construct an FSM that accepts L.
b
O—")
b
4(a) |Give the regular grammar for the FSM in figure. [05] CO3 | L3
(73 —_— s — Each gr
i P i — - grammar
D =) =) - L;) rule 1 mark
can be given
()
L = {w € {a, b}* : w ends with the pattern aaaal.
S > aS
S > bS
S —> aB
B—aC
C > aD
Doa
(b) [Construct FSM for the following regular grammar. [05] CO4 | L4
S—al T—-bT T—a T—oaW W-—o¢e¢ W-—oaT
States correct
- 2 marks
Transition
correct-3
marks
5(a) |If L, and L, are regular languages prove that Ly U L, L;.L,, and Ll* are also [05] CO4 | L3
regular languages. Union =2
marks
Concatenation
=2 marks
Kleene Star 1
mark

Page 2 of 8

If ais the regular expression By and if both L (8) and L (y) are regular, then we
construct M, = (KJ, 2. 85. 53, A,) such that L (M\) = L (a) = [(ﬁ)L (7)- If
necessary, rename the states of M, and M, so that K, N K; = @. We will build
M; by connecting every accepting state of M, to the start state of M, via an
e-transition. M; will start in the start state of M, and will accept iff M, does. So
M; = (K, UKy, Z, 83, 5, A;), where 83 = §;,U8,U {((g.€),5):qe A}

Ao

|
®
O
©

.....................................

If a is the regular expression B* and if L (B) is regular, then we construct
M, = (K;, Z,8;, 53, A;y) such that L (M,) = L () = L (B)*. We will create a
new start state s, and make it accepting, thus assuring that M, accepts e. (We
need a new start state because it is possible that s, the start state of M,, is not
an accepting state. If it isn’t and if it is reachable via any input string other than
e, then simply making it an accepting state would cause M, to accept strings
that are not in (L (M,))*.) We link the new s, to s, via an e-transitions. Final-
ly, we create e-transitions from each of M,’s accepting states back 1o 5,. So
M, = ({52} UK, 2,83 55 {52} UA)), where & = & U {((s2.8). 1)} U {((q,
e).5):qeA}.

-
T s s o o o B

o If aisthe regular expression 8 U yandif both L (B) and L () are regular, then we
construct M3 = (Kj, 2, 83, 53, Ay)suchthat L (M;) = L(a) = L (B)UL (y).1f
necessary, rename the states of M, and M, so that K, N K; = @. Create a new start
state, 53, and connect it to the start states of M, and M, via e-transitions, M; accepts
iff either M, or M, accepts So M3 = ({53} U K, U K,, X, 85, 53, A, U A,), where
8 = 8, U8 U {((s3,€), 51). ((53.8). :2) }.

e

Page 3 of 8

(b) (Consider the CFG with productions [05] CO3| L3
E— E+T|T
T — T*F |F RMD-1.5
F—(E)|0]1 marks
\Write Left Most Derivation, Right Most Derivation and Parse tree for the string LMD-1.5
0+((1*0)+0) marks
Parse Tree
2*1 = 2 marks
6. |Define a Context-free grammar (CFG). Write the CFG for the following [10] CO2 | L4
languages. -
(a) L={a’"b"|n>1} (b) L={a'b'c"| j=i+k and ,k>1} (c) L={w ¢ w"|w € a) 3 marks
{a,b}*} b) 4 marks
o A c) 3 marks
(Ox) L. { o~ b \M >/]’3
il
S o o Sh |t
) L - 106 Q on \ N R L Tl I <))
i {: & S AR
LU A ARAb|ab
(o8 b) Cv\ N b c\ be
A ogr b b
ST S
B9 i Jae w056 (a0 §
(?M)
s 5 nsalbsele
7(a) Simplify the following CFG [05] CO4 | L3
S=> AB |AC
A=ah |bAala, Removing
B=>bbA|aB|AB Unproductive
C=»aCalaD Symbols 3
D—=aD|bC mark_s
Removing

Page 4 of 8

unreachable

symbols: 2
marks
(b) [For the following grammar G, show that G is ambiguous. Then find an equivalent [05] CO4 | L4
grammar that is not ambiguous.
a) ({S,A, B, T,a,c} {a, c}R,S),whereR={S—> AB,S - BA, A- aA A- ac,
B->Tc, T-aTl, T-a}
Both A and B generate a*c. So any string in L can be generated two ways.
The first begins S = AB. The second begins S = BA. The easy fix is to
eliminate one of A or B. We pick B to eliminate because it uses
the more complicated path, through T. So we get: G' = {{S, A, a, c}, {a,
c}H R, S}, where R={S > AA, A - aA A - ac}. G’ is unambiguous. Any
derivation in G’ of the string a"c must be of the form: S =
AA =™ a™A = amac. So there is only one leftmost derivation in G’ of any
string in L.
8(a) |Convert the following grammar into Chomsky Normal Form. [05] CO3| L3
S - ABC
A-aC|D Writing 4
B-bB|e|A steps : 1 mark
C-Ac |g]|Cc E.aCh step
carries 1 mark|
D — aa

Answer: 4 Steps:
Remove c¢rules,
Remove Unit Production,

Remove Mixed Production and

Remove Long Production

Page 5 of 8

(b)

Design a PDA for the language L={a"b“"[n>1}. Show the ID for the input
string w=aabbbb

To
Iulw»

¢
b&»{@ eu/(:
5 __,_/,’—ﬁ %)
(%) @

Mb\/\r\vo\ \

g(o\/o/o‘)u) = (Wo, Mu)
gLO\/o, a, o) = (o‘/u/ Ao) - Lale
&)

gko\/ulb,Oﬁ: Lo\/\,
b (0)
sl € w0) = (€

[05]

PDA 3 marks
ID= 2 marks

CO4

L3

Page 6 of 8

< A N
—— = \
™ i.(’.'.o'?'
f * | ¢ | & |
T & ~\— +- o~
‘.,' Ao \‘, l-—- \‘I)'|1 = —\L"«-
N A ~ ~
[P
V24
PR
L\lo\
ove, & To) = (Ve 8Te)
- (| L',F /
| Oye A
b
‘ [O, O)
({ HNo, 9y R ,l [
o
R
f ¢ J
l ») L, &) [& s
Oy \
\ . i 3
clo \] \ S AW /
d | Y ;v
&) [G k)
[N (L /
\ \
P R
1\ g ok
\ (A
) & - y
[a n bt O T /
I 3
|V
= S Vo
r :’\L L\u\\)\’\’\’, AR \
> Le /:'
\ 5 Ghebvvy ¢ +
\- l vy @ s | (e
¥ 1\ Onoo-Le) -\ VI
\ | ot B
\ : o { Lo _/‘1
T R, S 7 I sl t
I'\ ; ‘ v A bie d
: 0O e, &) ACcer?
\‘ [N !_

9(a)

Prove that the following grammar is unambiguous: L={a"b"n>0} and
G = {{S,a,b}, {a.b},R. §}, where:

R = {S—aSb
S —e}.

We now show that G is correct. We first show that every string w in L(G) isin
A"B": Let st be the working string at any point in a derivation in GG. We need to de-
fine I'so that it captures the two features of every string in A"B": The number of
a’s equals the number of b’s and the letters are in the correct order. So we let [be:

(#5(st) = #p(s1))A(ste a*(SU e)b*).
Now we prove:

e [is true when st = S: In this case. #,(s1) = #y(s1)) = 0 and st is of the correct
form.

e If Jis true before a rule fires, then it is true after the rule fires: To prove this,
we consider the rules one at a time and show that each of them preserves I.
Rule (1) adds one a and one b to st. so it does not change the difference be-
tween the number of a's and the number of b's. Further, it adds the a to the left
of § and the b to the right of S, 50 if the form constraint was satisficd before ap-
plying the rule it still is afterwards. Rule (2) adds nothing so it does not change
either the number of a’s or b’s or their locations.

e If I'is true and st contains only terminal symbols, then st e A"B™: In this case, st
possesses the three properties required of all strings in A"B" They are com-
posed only of a’s and b's, (#;(st) = #y(sr)).and all a's come hefore all b's.

[07]

Loop
Invariant: 2
marks
3 Proving
Point 3 marks
Proof by
Induction
2 marks

CO4

L3

Page 7 of 8

Next we show that every string w in A"B" can be gencrated by G: Every
string in A"B" is of even length, so we will prove the claim only for strings of even
length. The proof is by induction on |w|:

» Base case: If |w| = 0, then w = &, which can be generated by applying rule
(2)t0 8.

e Prove: If every string in A"B" of length k. where k is even. can be generated by
G, then every string in A"B" of length k& + 2 can also be generated. Notice
that, for any even k, there is exactly one string in A"B" of length & : a*2p*2,
There is also only one string of length & + 2. namely aa**b*~b, that can be
generated by first applying rule (1) to produce asb, and then applying to §
whatever rule sequence generated a*’b*”. By the induction hypothesis, such a
sequence must exist.

(b)

\What is meant by rejecting computation in PDA? Give example for it.

IA computation C of M is a rejecting computation iff:
e C=(s,W,¢)|-M*(q, W, o),

e C is not an accepting computation, and

oM has no moves that it can make from (q, ¢, o).

M rejects a string w iff all of its computations reject.

[03]

2 marks for
definition.
One example
1 mark

CO3

L2

Page 8 of 8

