

USN

Internal Assessment Test 2 – Oct. 2018

Sub: Web Technologies & its Applications Sub Code: 15CS71 Branch: CSE

Date: 15-10-2018 Duration: 90 min’s Max Marks: 50 Sem / Sec: 7 – A, B & C OBE

Answer any FIVE FULL Questions MARKS CO RBT

1 (a) Briefly explain positioning elements with examples.

It is possible to move an item from its regular position in the normal flow, and

even move an item outside of the browser viewport so it is not visible or to

position it so it is always visible in a fixed position while the rest of the content

scrolls.

The position property is used to specify the type of positioning, and the possible

values are:

Relative Positioning:

 In relative positioning an element is displaced out of its normal flow

position and moved relative to where it would have been placed.

 When an element is positioned relatively, it is displaced out of its normal

flow position and moved relative to where it would have been placed.

 The other content around the relatively positioned element “remembers”

the element’s old position in the flow; thus the space the element would

have occupied is preserved as shown in Figure 5.4.

 As you can see in Figure 5.4, the original space for the positioned

[10] CO2 L2

<figure> element is preserved, as is the rest of the document’s flow.

 As a consequence, the repositioned element now overlaps other content:

that is, the <p> element following the <figure> element does not change to

accommodate the moved<figure>.

Absolute Positioning:

 When an element is positioned absolutely, it is removed completely from

normal flow. Thus, unlike with relative positioning, space is not left for

the moved element, as it is no longer in the normal flow.

 Its position is moved in relation to its container block.

 In the example shown in Figure 5.5, the container block is the <body>

element. Like with the relative positioning example, the moved block can

now overlap content in the underlying normal flow.

 A moved element via absolute position is actually positioned relative to its

nearest positioned ancestor container (that is, a block-level element

whose position is fixed, relative, or absolute).

 In the example shown in Figure 5.6, the <figcaption> is absolutely

positioned; it is moved 150 px down and 200 px to the left of its nearest

positioned ancestor, which happens to be its parent (the <figure>

element).

Z-Index:

 Each positioned element has a stacking order defined by the z-index

property (named for the z-axis).

 Items closest to the viewer (and thus on the top) have a larger z-index

value.

 First, only positioned elements will make use of their z-index, simply

setting the z-index value of elements will not necessarily move them on

top or behind other items.

Fixed Position:

 The fixed position value is used relatively infrequently. It is a type of

absolute positioning, except that the positioning values are in relation to

the viewport (i.e., to the browser window).

 Elements with fixed positioning do not move when the user scrolls up or

down the page, as can be seen in Figure 5.8.

 The fixed position is most commonly used to ensure that navigation

elements or advertisements are always visible.

2 (a) What does floating an element do? How to do you float an element?

Floating Elements:

 It is possible to displace an element out of its position in the normal flow

via the CSS float property.

 An element can be floated to the left or floated to the right.

 When an item is floated, it is moved all the way to the far left or far right

of its containing block and the rest of the content is “re-flowed” around

the floated element, as can be seen in Figure 5.9.

 Notice that a floated block-level element must have a width specified; if

you do not, then the width will be set to auto, which will mean it

implicitly fills the entire width of the containing block, and there thus will

be no room available to flow content around the floated item. Also note in

the final example in Figure 5.9 that the margins on the floated element are

respected by the content that surrounds the floated element.

Floating within a Container:

 It should be reiterated that a floated item moves to the left or right of its

container (also called its containing block). In Figure 5.9, the containing

block is the HTML document itself so the figure moves to the left or right

of the browser window.

[05]

CO2 L2

 (b) What is viewport? Why is it important?

 The way the webpage works is the mobile browser renders the page on a

canvas called the viewport.

 On iPhones, for instance, the viewport width is 980 px, and then that

viewport is scaled to fit the current width of the device (which can change

with orientation and with newer versions that have more physical pixels in

the screen), as shown in Figure 5.31.

 The mobile Safari browser introduced the viewport <meta> tag as a way

for developers to control the size of that initial viewport.

 If the developer has created a responsive site similar to that shown below.

One that will scale to fit a smaller screen, she may not want the mobile

browser to render it on the full-size viewport.

 The web page can tell the mobile browser the viewport size to use via the

viewport <meta> element, as shown below:

<html>

<head>

<meta name="viewport" content="width=device-width" />

 By setting the viewport as in this listing, the page is telling the browser

[05] CO2 L2

that no scaling is needed, and to make the viewport as many pixels wide as the

device screen width.

 This means that if the device has a screen that is 320 px wide, the

viewport width will be 320 px; if the screen is 480 px (for instance, in

landscape mode), then the viewport width will be 480 px.

3 (a) Explain the role of grid systems in the creation of multicolumn layouts.

 Grid systems make it easier to create multicolumn layouts.

 There are many CSS grid systems; some of the most popular are Bootstrap

(twitter.github.com/bootstrap), Blueprint (www.blueprintcss.org), and

960 (960.gs).

 The most important of these capabilities is a grid system. Print designers

typically use grids as a way to achieve visual uniformity in a design.

 In print design, the very first thing a designer may do is to construct, for

instance, a 5- or 7- or 12-column grid in a page layout program like

InDesign or Quark Xpress. The rest of the document, whether it be text or

graphics, will be aligned and sized according to the grid.

 CSS frameworks provide similar grid features. The 960 framework uses

either a 12- or 16-column grid.

 Bootstrap uses a 12-column grid. Blueprint uses a 24-column grid.

 The grid is constructed using <div> elements with classes defined by the

framework. The HTML elements for the rest of your site are then placed

within these <div> elements

 In the 960 system, a row is terminated with <div class="clear"> </div>. In

Bootstrap, content must be placed within the <div class="row"> row

container.

 While Listing 5.3 shows the same thing in the Bootstrap framework.

[06] CO2 L2

 In both systems, elements are laid out in rows; elements in a row will span

from 1 to 12 columns.

 (b) What are the advantages and disadvantages of Client and server side scripting?

There are many advantages of client-side scripting:

■ Processing can be offloaded from the server to client machines, thereby

reducing the load on the server.

■ The browser can respond more rapidly to user events than a request to a

remote server ever could, which improves the user experience. JavaScript

can interact with the downloaded HTML in a way that the server cannot,

creating a user experience more like desktop software than simple HTML

ever could.

The disadvantages of client-side scripting are mostly related to how

programmers use JavaScript in their applications. Some of these include:

■ There is no guarantee that the client has JavaScript enabled, meaning any

required functionality must be housed on the server, despite the possibility

that it could be offloaded.

■ The idiosyncrasies between various browsers and operating systems make

it difficult to test for all potential client configurations. What works in one

browser, may generate an error in another.

■ JavaScript-heavy web applications can be complicated to debug and

maintain. JavaScript has often been used through inline HTML hooks that

are embedded into the HTML of a web page. Although this technique has

been used for years, it has the distinct disadvantage of blending HTML and

JavaScript together, which decreases code readability, and increases the

difficulty of web development.

[04] CO2 L2

4 (a) Compare graceful degradation with progressive enhancement.

 The principle of graceful degradation is one possible strategy. With this

strategy you develop your site for the abilities of current browsers.

 For those users who are not using current browsers, you might provide an

alternate site or pages for those using older browsers that lack the

JavaScript (or CSS or HTML5) used on the main site.

 The idea here is that the site is “degraded” (i.e., loses capability)

“gracefully” (i.e., without pop-up JavaScript error codes or without

condescending messages telling users to upgrade their browsers).

 The alternate strategy is progressive enhancement, which takes the

opposite approach to the problem. In this case, the developer creates the

site using CSS, JavaScript, and HTML features that are supported by all

browsers of a certain age or newer. (Eventually, one does have to stop

supporting ancient browsers; many developers have, for instance,

stopped supporting IE 6.)

 To that baseline site, the developers can now “progressively” (i.e., for

each browser) “enhance” (i.e., add functionality) to their site based on the

capabilities of the users’ browsers. For instance, users using the current

version of Opera and Chrome might see the fancy HTML5 color input

form elements (since both support it at present), users using current

versions of other browsers might see a jQuery plug-in that has similar

functionality, while users of IE 7 might just see a simple text box.

[05] CO3 L2

 (b) What are the different ways in which JavaScript can be linked to an HTML page?

 JavaScript can be linked to an HTML page as inline, embedded, or

external.

Inline JavaScript

 Inline JavaScript refers to the practice of including JavaScript code

directly within certain HTML attributes, such as that shown below :

 <a href="JavaScript:OpenWindow();"more info

 <input type="button” onclick="alert('Are you sure?');" />

Embedded JavaScript

 Embedded JavaScript refers to the practice of placing JavaScript code

within a <script> element.

[05] CO3 L2

External JavaScript

 JavaScript external files have the extension .js. Modern websites often

have links to several, maybe even dozens, of external JavaScript files (also

called libraries).

 These external files typically contain function definitions, data definitions,

and other blocks of JavaScript code.

 The link to the external JavaScript file is placed within the <head>

element, just as was the case with links to external CSS files. While this is

convention, it is in fact possible to place these links anywhere within the

<body> element.

 Placing them either in the <head> element or the very bottom of the

<body> element.

 [10] CO4 L2

5. a) Define DOM. Explain DOM property and its methods.[10]

The Document Object Model (DOM) way of programmatically accessing the elements and attributes within

the HTML. This is accomplished through a programming interface (API) called the Document Object Model

(DOM).

Nodes

In the DOM, each element within the HTML document is called a node. If the DOM is a tree, then each

node is an individual branch.

Method Description

createAttribute() Creates an attribute node

Eg:

<head>

<style>

.democlass {

 color: red;

}

</style>

</head>

<body>

<h1>Hello World</h1>

<h1>Hello World22</h1>

<p>Click the button to create a "class" attribute with the value "democlass" and insert it to the H1 element

above.</p>

<button onclick="myFunction()">Try it</button>

<script>

function myFunction() {

 var h1 = document.getElementsByTagName("H1")[1];

 var att = document.createAttribute("class");

 att.value = "democlass";

 h1.setAttributeNode(att);

}

</script>

</body>

createElement() Creates an element node

createTextNode() Creates a text node

<body>

<p>Click the button to make a BUTTON element with text.</p>

<button onclick="myFunction()">Try it</button>

<script>

function myFunction() {

 var btn = document.createElement("BUTTON");

 var t = document.createTextNode("CLICK ME");

 btn.appendChild(t);

 document.body.appendChild(btn);

}

</script>

</body>

getElementById(id) Returns the element node whose id attribute

matches the passed id parameter

getElementsByTagName(name) Returns a NodeList of elements whose tag name

matches the passed name parameter

<body>

<p>An unordered list:</p>

 Coffee

 Tea

 Milk

<p>Click the button to display the innerHTML of the second li element (index 1).</p>

<button onclick="myFunction()">Try it</button>

<p id="demo"></p>

<script>

function myFunction() {

 var x = document.getElementsByTagName("LI");

 document.getElementById("demo").innerHTML = x[1].innerHTML;

}

</script>

</body>

They include getElementByTagName() and the indispensable getElementById(). While the former method

returns an array of DOM nodes (called a NodeList) matching the tag, the latter returns a single

DOM element (covered below), that matches the id passed as a parameter.

<body>

<h1>Reviews</h1>

<div id="latestComment">

<p>By Ricardo on <time>September 15, 2012</time></p>

<p>Easy on the HDR buddy.</p>

</div>

<hr/>

<div>

<p>By Susan on <time>October 1, 2012</time></p>

<p>I love Central Park.</p>

</div>

<hr/>

</body>

var abc = document.getElementById("latestComment");

var list = document.getElementsByTagName("div");

Figure 6.19 Relationship between HTML tags and getElementByID() and getElementsByTagName()

// specify the doctype, for example html

var a = document.doctype.name;

// specify the page encoding, for example ISO-8859-1

var b = document.inputEncoding;

Element Node Object

Property Description

className The current value for the class attribute of this HTML element.

id The current value for the id of this element.

innerHTML Represents all the things inside of the tags. This can be read or written to and is the primary

way in which we update particular <div> elements using JavaScript.

Style The style attribute of an element. We can read and modify this property.

tagName The tag name for the element.

<body>

<ul class="example">

 <li class="child">Coffee

 <li class="child">Tea

<p>Click the button to change the text of the first list item (index 0).</p>

<button onclick="myFunction()">Try it</button>

<p>Note: The getElementsByClassName() method is not supported in Internet Explorer 8

and earlier versions.</p>

<script>

function myFunction() {

 var list = document.getElementsByClassName("example")[0];

 list.getElementsByClassName("child")[0].innerHTML = "Milk";

}

</script>

</body>

<body>

<h1 id="myH1">How to change the style of a header</h1>

<p>Click the button to add a color to the H1 element.</p>

<button onclick="myFunction()">Try it</button>

<script>

function myFunction() {

 document.getElementById("myH1").style.color = "red";

}

</script>

</body>

https://www.w3schools.com/jsref/tryit.asp?filename=tryjsref_element_style

Modifying a DOM Element

Property Description

href The href attribute used in a tag to specify a URL to link to a

name The name property is a bookmark to identify a, input, textarea, this tag. Unlike id, which is

available to all tags,name is limited to certain form-related tags.

form

src Links to an external URL that should be loaded img, input, iframe,

into the page (as opposed to href, which is a link to follow when clicked) Script

value The value is related to the value attribute of input, textarea,submit

input tags. Often the value of an input field is user defined, and we use value to get that

5. b)What is verbose technique in JavaScript? Explain with an example

A More Verbose Technique

Appendchild()

<body>

https://www.w3schools.com/jsref/tryit.asp?filename=tryjsref_element_style

<ul id="myList">

 Coffee

 Tea

<p>Click the button to append an item to the end of the list.</p>

<button onclick="myFunction()">Try it</button>

<script>

function myFunction() {

 var node = document.createElement("LI");

 var textnode = document.createTextNode("Water");

 node.appendChild(textnode);

 document.getElementById("myList").appendChild(node);

}

</script>

Removechild()

<ul id="myList">CoffeeTeaMilk

<p>Click the button to remove the first item from the list.</p>

<button onclick="myFunction()">Try it</button>

<script>

function myFunction() {

 var list = document.getElementById("myList");

 list.removeChild(list.childNodes[0]);

}

</script>

6.a) What are the responsibilities of web server? Explain

A Web Server’s Responsibilities

A web server has many responsibilities beyond responding to requests for

HTML files.

These include handling

1. HTTP connections,

2. responding to requests for static and dynamic resources,

3. managing permissions and access for certain resources,

4. encrypting and compressing data, managing multiple domains and URLs,

5. managing database connections, cookies, and state, and uploading and managing files.

Apache and Linux

You can consider the Apache web server as the intermediary that interprets HTTP

requests that arrive through a network port and decides how to handle the request,

which often requires working in conjunction with PHP; both Apache and PHP make

use of configuration files that determine exactly how requests are handled,

Apache runs as a daemon on the server. A daemon is an executing instance of a program (also called a

process) that runs in the background, waiting for a specific event that will activate it. As a background

process, the Apache daemon waits for incoming HTTP requests. When a request arrives, Apache then uses

modules to determine how to respond to the request. In Apache, a module is a compiled extension (usually

written in the C programming language) to Apache that helps it handle requests. For this reason, these

modules are also sometimes referred to as handlers. Figure 8.6 illustrates that when a request comes into

Apache, each module is given an opportunity to handle some aspect of the request. Some modules handle

authorization, others handle URL rewriting, while others handle specific extensions.

APACHE and PHP

PHP is usually installed as an Apache module (though it can alternately be installed as a CGI binary). The

PHP module mod_php5 is sometimes referred to as the SAPI (Server Application Programming Interface)

layer since it handles the interaction between the PHP environment and the web server environment. Apache

runs in two possible modes: multi-process (also called preforked) or multi-threaded (also called worker),

which are shown in Figure 8.7. The default installation of Apache runs using the multi-process mode. That

is, each request is handled by a separate process of Apache; the term fork refers to the operating system

creating a copy of an already running process. Since forking is time intensive, Apache will prefork a set

number of additional processes in advance of their being needed. Forking is relatively efficient on

Unixbased operating systems, but is slower on Windows-based operating systems. As well, a key advantage

of multi-processing mode is that each process is insulated from other processes; that is, problems in one

process can’t affect other processes.

In the multi-threaded mode, a smaller number of Apache processes are forked. Each of the processes runs

multiple threads. A thread is like a lightweight process that is contained within an operating system process.

A thread uses less memory than a process, and typically threads share memory and code; as a consequence,

the multi-threaded mode typically scales better to large loads. When using this mode, all modules running

within Apache have to be thread safe. Unfortunately, not every PHP module is thread-safe, and the thread

safety of PHP in general is quite disputed.

PHP itself is written in the C programming language and is composed of three main modules:

PHP core. The Core module defines the main features of the PHP environment, including essential functions

for variable handling, arrays, strings, classes, math, and other core features. Extension layer. This module

defines functions for interacting with services outside of PHP. This includes libraries for MySQL (and other

databases), FTP, SOAP web services, and XML processing, among others. Zend Engine. This module

handles the reading in of a requested PHP file, compiling it, and executing it. Figure 8.8 illustrates

(somewhat imaginatively) how the Zend Engine operates behind the scenes when a PHP page is requested.

The Zend Engine is a virtual machine (VM) analogous to the Java Virtual Machine or the Common

Language Runtime in the .NET Framework. A VM is a software program that simulates a physical

computer; while a VM can operate on multiple platforms, it has the disadvantage of executing slower than a

native binary application.

7. Briefly explain the JavaScript event classes with examples.

Event Types

The classes are mouse events, keyboard events, form events, and frame events.

Mouse Events

Mouse events are defined to capture a range of interactions driven by the mouse.

Event Description

Onclick The mouse was clicked on an element

ondblclick The mouse was double clicked on an element

onmousedown The mouse was pressed down over an element

onmouseup The mouse was released over an element

onmouseover The mouse was moved (not clicked) over an element

onmouseout The mouse was moved off of an element

onmousemove The mouse was moved while over an element

table 6.7 Mouse Events in JavaScript

Keyboard Events

Keyboard events are often overlooked by novice web developers, but are important tools for power users.

Event Description

onkeydown The user is pressing a key (this happens first)

onkeypress The user presses a key (this happens after onkeydown)

onkeyup The user releases a key that was down (this happens last)

table 6.8 Keyboard Events in JavaScript

Form Events

Forms are the main means by which user input is collected and transmitted to the server.

Event Description

onblur A form element has lost focus (that is, control has moved to a different element), perhaps due

to a click or Tab key press.

onchange Some <input>, <textarea>, or <select> field had their value change. This could mean the user

typed something, or selected a new choice.

onfocus Complementing the onblur event, this is triggered when an element gets focus (the user clicks

in the field or tabs to it).

onreset HTML forms have the ability to be reset. This event is triggered when that happens.

onselect When the users selects some text. This is often used to try and prevent copy/paste.

onsubmit When the form is submitted this event is triggered. We can do some prevalidation when the

user submits the form in JavaScript before sending the data on to the server.

table 6.9 Form Events in JavaScript

document.getElementById("loginForm").onsubmit = function(e){

var pass = document.getElementById("pw").value;

if(pass==""){

alert ("enter a password");

e.preventDefault();

}

}

listing 6.16 Catching the onsubmit event and validating a password to not be blank

Frame Events

Frame events (see Table 6.10) are the events related to the browser frame that contains your web page. The

most important event is the onload event, which tells us an object is loaded and therefore ready to work

with. In fact, every nontrivial event listener you write requires that the HTML be fully loaded.

window.onload= function(){

//all JavaScript initialization here.

}

Event Description

Onabort An object was stopped from loading

onerror An object or image did not properly load

onload When a document or object has been loaded

onresize The document view was resized

onscroll The document view was scrolled

onunload The document has unloaded

table 6.10 Frame Events in JavaScript

8. Explain functions in PHP elaborately with examples.

Functions

In PHP there are two types of function:

1. User-defined functions

2. Built-in functions.

A user-defined function is one that you the programmer define. A built-infunction is one of the functions

that come with the PHP environment

Function Syntax

To create a new function you must think of a name for it, and consider what it willdo. Functions can return

values to the caller, or not return a value. They can be set upto take or not take parameters.

function getNiceTime() {

return date("H:i:s");

}

The definition of a function to return the current time as a string

function outputFooterMenu() {

echo '<div id="footer">';

echo 'Home | Products | ';

echo 'About us | Contact us';

echo '</div>';

}

The definition of a function without a return value

Calling a Function

To call a function you must use its name with the () brackets. Since getNiceTime()returns a string, you can

assign that return value to a variable, or echo that returnvalue directly, as shown below.

$output = getNiceTime();

echo getNiceTime();

If the function doesn’t return a value, you can just call the function:

outputFooterMenu();

Parameters

It is more common to define functions with parameters, since functions are morepowerful and reusable

when their output depends on the input they get. Parametersare the mechanism by which values are passed

into functions, and there are somecomplexities that allow us to have multiple parameters, default values, and

to passobjects by reference instead of value.

To define a function with parameters, you must decide how many parametersyou want to pass in, and in

what order they will be passed. Each parameter must benamed.

function getNiceTime($showSeconds) {

if ($showSeconds==true)

return date("H:i:s");

else

return date("H:i");

}

A function to return the current time as a string with an integer parameterThus to call our function, you can

now do it in two ways:

echo getNiceTime(1); // this will print seconds

echo getNiceTime(0); // will not print seconds

In fact any nonzero number passed in to the function will be interpreted as truesince the parameter is not

type specific.

Parameter Default Values

function getNiceTime($showSeconds=1){

if ($showSeconds==true)

return date("H:i:s");

else

return date("H:i");

}

A function to return the current time with a parameter that includes a default. If you do include a value in

your function call, the default will beoverridden by whatever that value was.

Passing Parameters by Reference

By default, arguments passed to functions are passed by value in PHP.

function changeParameter($arg) {

$arg += 300;

echo "
arg=" . $arg;

}

$initial = 15;

echo "
initial=" . $initial; // output: initial=15

changeParameter($initial); // output: arg=315

echo "
initial=" . $initial; // output: initial=15

Passing a parameter by value

The mechanism in PHP to specify that a parameter is passed byreference is to add an ampersand (&) symbol

next to the parameter name in thefunction declaration.

function changeParameter(&$arg) {

$arg += 300;

echo "
arg=". $arg;

}

$initial = 15;

echo "
initial=" . $initial; // output: initial=15

changeParameter($initial); // output: arg=315

echo "
initial=" . $initial; // output: initial=315

Passing a parameter by reference

Variable Scope within Functions

It will come as no surprise that all variables defined within a function (such asparameter variables) have

function scope, meaning that they are only accessiblewithin the function.

$count= 56;

function testScope() {

echo $count; // outputs 0 or generates run-time warning/error

}

testScope();

echo $count; // outputs 56

While variables defined in the main script are said to have global scope,

$count= 56;

function testScope() {

global $count;

echo $count; // outputs 56

}

testScope();

echo $count; // outputs 56

Using the global keyword

