USN					

Internal Assessment Test III Solutions – Nov. 2018

Sub:	Computer Networks Sub Co	ode: 15CS52		Branch:	CSE		
Date:	19/11/2018 Duration: 90 min's Max Marks: 50 Sem / S	Sec:	V / A	A,B,C		OE	E E
	Answer any FIVE FULL Questions	l			ARKS	CO	RBT
Q1.	With a diagram, explain various components of 3G system architecture. **Radio Interface** ONCOMA, 19PA) Radio Access Network Controller (RNQ) Access Network (OTRAN) Republic telephone network (OTRAN) Republic telephone network (OTRAN) Republic telephone network (OTRAN) SGSN **General Packet Radio Service tritternet **Linternet** I) Connects radio access-networks (RANs) to the public Internet. 2) Interoperates with components of the existing voice-network. **Two types of nodes in the core-network: 1) Serving GPRS Support Node (SGSN) and 2) Gateway GPRS Support Node (GGSN). 1) SGSN **An SGSN is responsible for delivering data to/from the mobile-nodes in the Main responsibilities of the SGSN: 1) Interacting with the MSC of voice-network. 2) Providing user authorization and handoff: 3) Maintaining location information about active mobile-nodes. 4) Performing data forwarding between a GGSN & mobile-nodes in the RA (GGSN) acts as a gateway. **The GGSN is used to connect multiple SGSNs into the larger Internet. **To the outside world, the GGSN looks like any other router. **The mobility of the nodes within the GGSN's network is hidden from the	he RAN.	(1)		[10]	COS	L2
	 3G Radio Access Network: The Wireless Edge The RAN is the wireless first-hop network that the 3G user sees. The RNC (Radio Network Controller) typically controls several cell BTSs Each cell's wireless-link operates between the mobile-nodes and a BTS. The RNC connects to both the circuit-switched voice-network and the pace 			farks)			
Q2.	With relevant diagrams, explain the approaches for routing to a mobile nod Routing to a Mobile Node: • Two approaches are 1) indirect routing and 2) direct routing. Indirect Routing to a Mobile Node • Four steps are involved. Step 1: The correspondent → addresses the datagram to the mobile-node's permanent-address and	e.	(5 M	larks)	[10]	CO5	L2

→ routes the datagram to the mobile-node's home-network.

Step 2:

Home-agent encapsulates the correspondent's original datagram within a larger datagram. This larger datagram is addressed & delivered to the mobile-node's COA.

Step 3

The foreign-agent receives and decapsulates the datagram.

The foreign-agent forwards the original datagram to the mobile-node.

Step 4:

The mobile-node directly routes the datagram to the correspondent. There is no need to route the datagram back through the home-agent.

Disadvantage of Indirect Routing: Suffers from triangle routing problem: The datagrams addressed to the mobile-node must be routed first to the home-agent and then to the foreign-network, even when an efficient route exists b/w the correspondent and the mobile-node. (2 Marks)

Solution: Use direct routing.

Direct Routing to a Mobile Node

(3 Marks)

• Four steps are involved. Figure 4.6 illustrates the 4 steps.

Steps 1 & 2

A correspondent-agent in the correspondent's n/w first learns the COA of the mobile-node. This can be done by having the correspondent-agent query the home-agent.

Steps 3 & 4

Then, the correspondent-agent forwards datagrams directly to the mobile-node's COA

Q3. Define Handoff. Explain the steps accomplishing handoffs in GSM.
A handoff occurs when a mobile-station moves from one base-station to another during a call. (1 Mark)

1) Before handoff, a call is initially routed to the mobile through old base-station.

2) After handoff, the call is routed to the mobile through another new base-station.

(1 Mark)

Eight steps are involved. Figure illustrates the steps involved when a hand off occurs. (8 Marks)

- 1) Old base-station (BS) informs both visited M C & new BS that a handoff is about to happen.
- 2) The visited MSC performs following tasks:
- i) Initiates path setup to the new BS.
- ii) Allocates the resources needed to carry the rerouted call.

Г	hu ai	1	1 1	
	iii) Signals the new BS that a handoff is about to occur.			
	3) The new BS allocates and activates a radio-channel for the mobile.			
	4) The new BS informs both visited MSC and old BS that the new path is set up.			
	5) The mobile is informed to perform a handoff.			
	6) The mobile & new BS exchange signaling messages to fully activate the new channel.			
	7) The mobile sends a handoff complete message to the new BS.			
	This message is then forwarded to the visited MSC.			
	The visited MSC then reroutes the ongoing-call to the mobile via the new BS.			
	8) The resources allocated along the path to the old BS are released.			
	VIR			
	2			
	A A			
	Old New			
	BS 6 BS			
	Ti Al 1661 A 1 A A A A A A A A A A A A A A A			
0.4	Fig: A handoff between base stations with a common MSC		CO5	1.0
Q4.	With a diagram, explain the following with respect to mobile IP:		CO5	L2
	a) Agent Discovery	[6]		
	A mobile-node arriving to a new network must learn the identity of the corresponding foreign			
	or home- agent. This process is known as agent discovery. (1 Mark)			
	• Two methods to perform agent discovery:			
	1) Via agent advertisement and			
	2) Via agent solicitation.			
	Agent Advertisement (3 Marks)			
	 A foreign or home-agent advertises its services using a router discovery protocol. 			
	 The agent periodically broadcasts a router discovery message on all links. 			
	The router discovery message contains			
	1) IP address of the agent and			
	2) A mobility agent advertisement extension.			
	Five main fields in the extension:			
	1) Home Agent (H)			
	This bit indicates that the agent is a home-agent for the network in which it resides.			
	2) Foreign Agent (F)			
	This bit indicates that the agent is a foreign-agent for the network in which it resides.			
	3) Registration required (R) This bit is directed that a making many in this materials are a sixty with a family a second			
	This bit indicates that a mobile-user in this network must register with a foreign-agent.			
	4) M, G Encapsulation			
	These bits indicate whether an encapsulation other than IP-in-IP encapsulation will be used.			
	5) Care-of-address (COA) Fields			
	This field indicates a list of one or more care-of-addresses provided by the foreign-agent.			
	Agent Solicitation (2 marks)			
	• A mobile-node wanting to learn about agents can broadcast an agent solicitation message.			
	• An agent receiving the solicitation will unicast an agent advertisement directly to the mobile-			
	node.			
	b) Registration with the home agent			
		[4]		
	Address must be registered with the home-agent. This can be done in 2 ways:			
	1) Via the foreign-agent who then registers the COA with the home-agent.			
	2) By the mobile IP node itself.			
	Four steps are involved. (4 Marks)			
	1) When a mobile receives a foreign-agent advertisement, the mobile sends a registration-			
	request to the foreign-agent.			
	The registration-request contains			
	i) COA advertised by the foreign-agent			
	ii) address of the home-agent (HA)			
	iii) permanent-address of the mobile (MA)			
	iv) registration identification and			
	1v) registration identification and			

	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	1		
	v) requested lifetime of the registration.			
	The requested registration lifetime indicates number of seconds the registration is valid.			
	If registration is not renewed within the specified lifetime, the registration will become invalid.			
	2) When the foreign-agent receives the registration-request, the foreign-agent records the			
	mobile's permanent IP address.			
	The foreign-agent then sends a registration-request to the home-agent.			
	3) When home-agent receives the registration-request, the home-agent checks for correctness.			
	The home-agent binds the mobile's permanent IP address with the COA.			
	The home-agent sends a registration-reply.			
	4) The foreign-agent receives and forwards the registration-reply to the mobile-node.			
Q5.	Briefly explain the following streaming stored video applications:		CO6	L2
	a) Dynamic Adaptive Streaming over HTTP (DASH)	F.C		
	The video is encoded into several different versions.	[5+5]		
	• Each version has a different bit-rate and a different quality level.			
	• Two main tasks: (2 Marks)			
	1) The client dynamically requests video-chunks from the different versions: low & high.			
	i) When the available bandwidth is high, the client selects chunks from a high-rate version. For			
	ex: Fiber connections can receive a high-quality version.			
	ii) When the available bandwidth is low, the client naturally selects from a low-rate version.			
	For ex: 3G connections can receive a low-quality version.			
	2) The client adapts to the available bandwidth if end-to-end bandwidth changes during session. This			
	feature is particularly important for mobile-users.			
	The mobile-users see their bandwidth fluctuate as they move with respect to base-stations.			
	• HTTP server stores following files:			
	1) Each video version with a different URL.			
	2) Manifest file provides a URL for each version along with its bit-rate.			
	• Here is how it works: (3 Marks)			
	1) First, the client requests the manifest file and learns about the various versions.			
	2) Then, the client selects one chunk at a time by specifying			
	\rightarrow URL and			
	→ byte range in an HTTP GET request message.			
	3) While downloading chunks, the client			
	→ measures the received bandwidth and			
	→ runs a rate determination-algorithm.			
	i) If measured-bandwidth is high, client will choose chunk from high-rate version.			
	ii) If measured-bandwidth is low, client will choose chunk from low-rate version			
	4) Therefore, DASH allows the client to freely switch among different quality-levels.			
	b) Streaming stored video over HTTP/TCP.			
	The video is stored in an HTTP server as an ordinary file with a specific URL.			
	• Here is how it works: (5 Marks)			
	1) When a user wants to see the video, the client			
	→ establishes a TCP connection with the server and			
	\rightarrow issues an HTTP GET request for that URL.			
	2) Then, the server responds with the video file, within an HTTP response message.			
	3) On client side, the bytes are collected in a client application buffer.			
	4) Once no. of bytes in this buffer exceeds a specific threshold, the client begins playback.			
Q6.	With a neat diagram, explain CDN operation.	[10]	CO6	L2
	A CDN (2 Marks)	1		
	→ manages servers in multiple geographically distributed locations			
	→ stores copies of the videos in its servers, and			
	→ attempts to direct each user-request to a CDN that provides the best user experience.			
	• The CDN may be a private CDN or a third-party CDN.			
	A private CDN is owned by the content provider itself. For example:			
	Google"s CDN distributes YouTube videos			
	A third-party CDN distributes content on behalf of multiple content providers CDNs.			
	CDN Operation: (6 Marks+ fig: 2 marks)			
	• When a browser wants to retrieve a specific video, the CDN intercepts the request.			
	• Then, the CDN			
	1) determines a suitable server-cluster for the client and			
	2) redirects the client's request to the desired server.			
	• Most CDNs take advantage of DNS to intercept and redirect requests.	1		

• If the bucket is empty, arriving packets have to wait in the buffer until a	a sufficient no. of tokens is	
generated.	(3 Marks)	

_ . . _ . . _ . . _ . . _ . . .

_ . . _ . . _ . . _ . . _ . . _ . . .

_ . . _ . . _ . . _ . .

- - - -

_ . . _ . . _ . . _ . . _

_ . . _ . . _ . . .